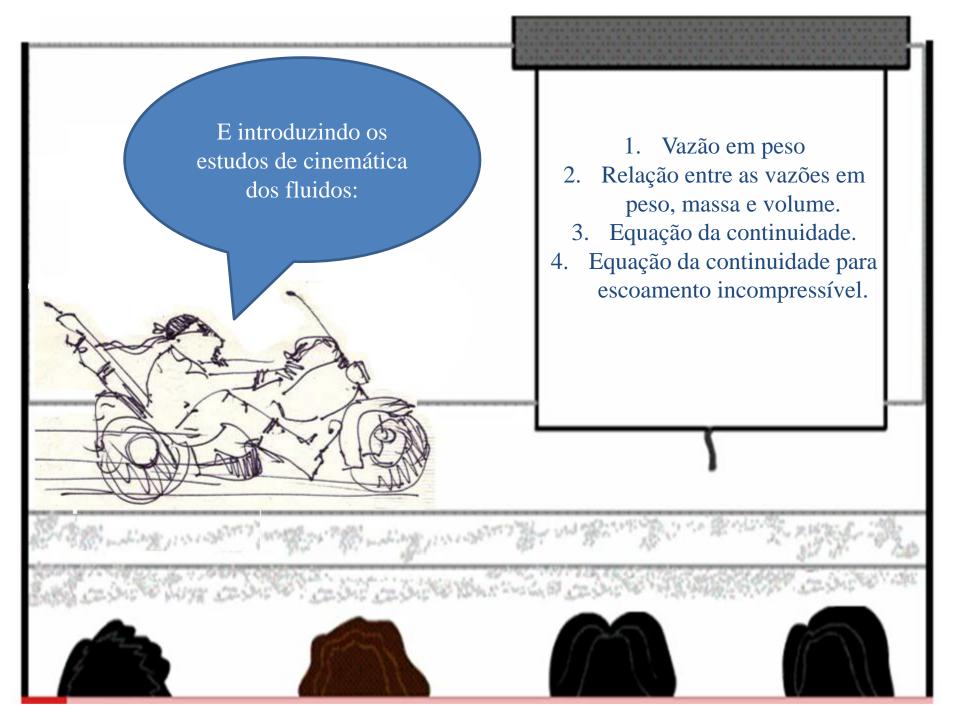
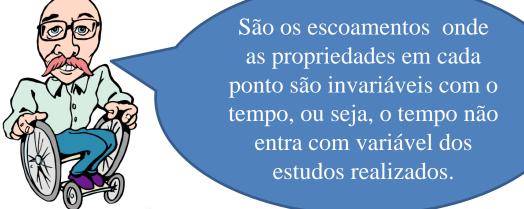
Décima segunda aula de FT

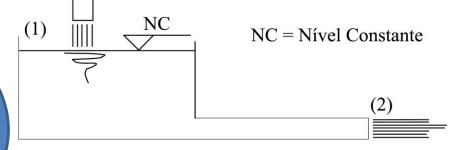
Raimundo (Alemão) Ferreira Ignácio



Regime permanente

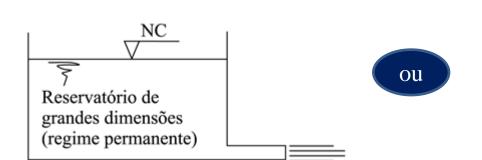


No escoamento em regime permanente o nível de reservatório permanece constante.



Como isto pode ser possível?

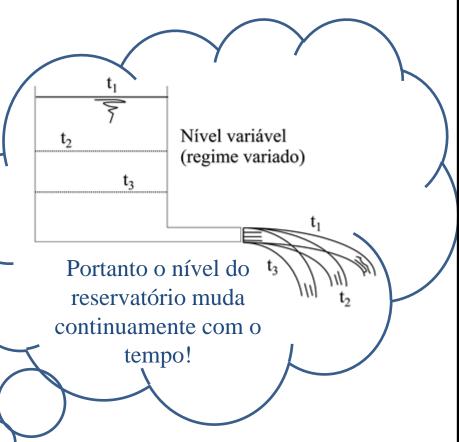
O nível do reservatório permanece constante quando:



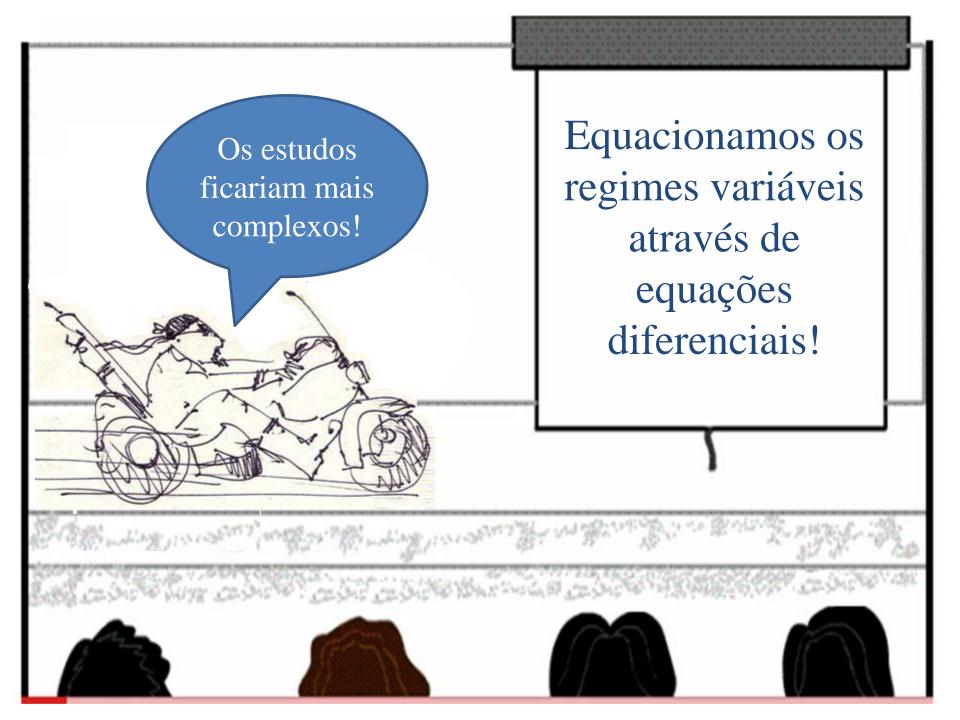
A quantidade de fluido que entra é igual a quantidade de fluido que saí!

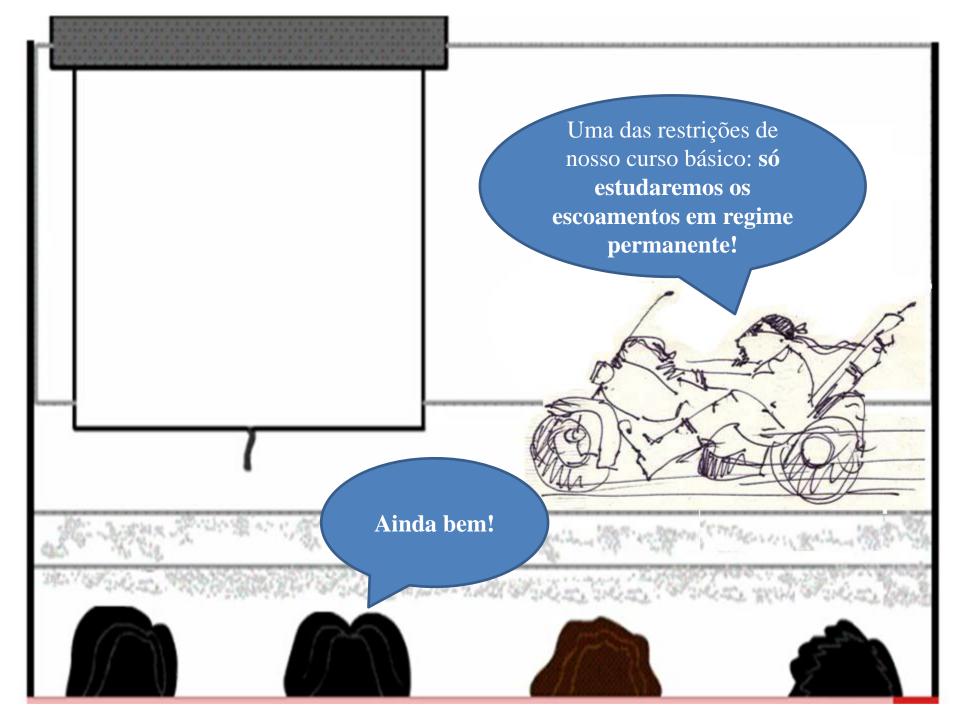
Regime variado

O tempo é uma variável do fenômeno estudado, portanto as propriedades em um ponto do escoamento mudam com o tempo.



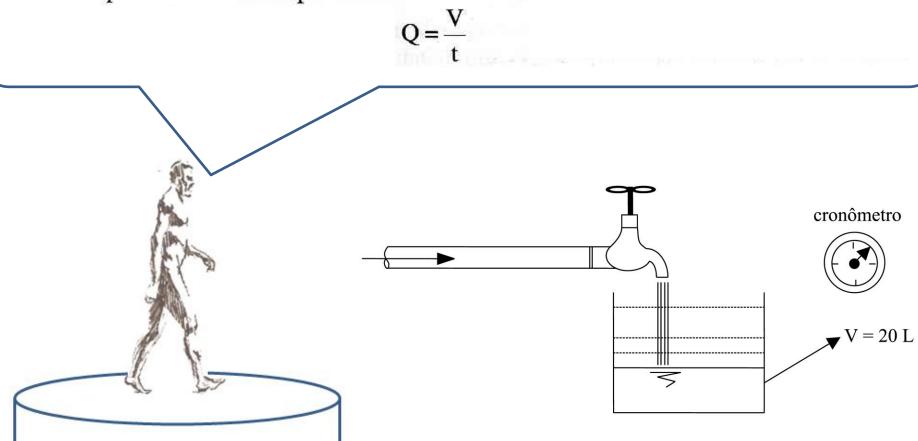
Como equacionamos os estudos neste caso?

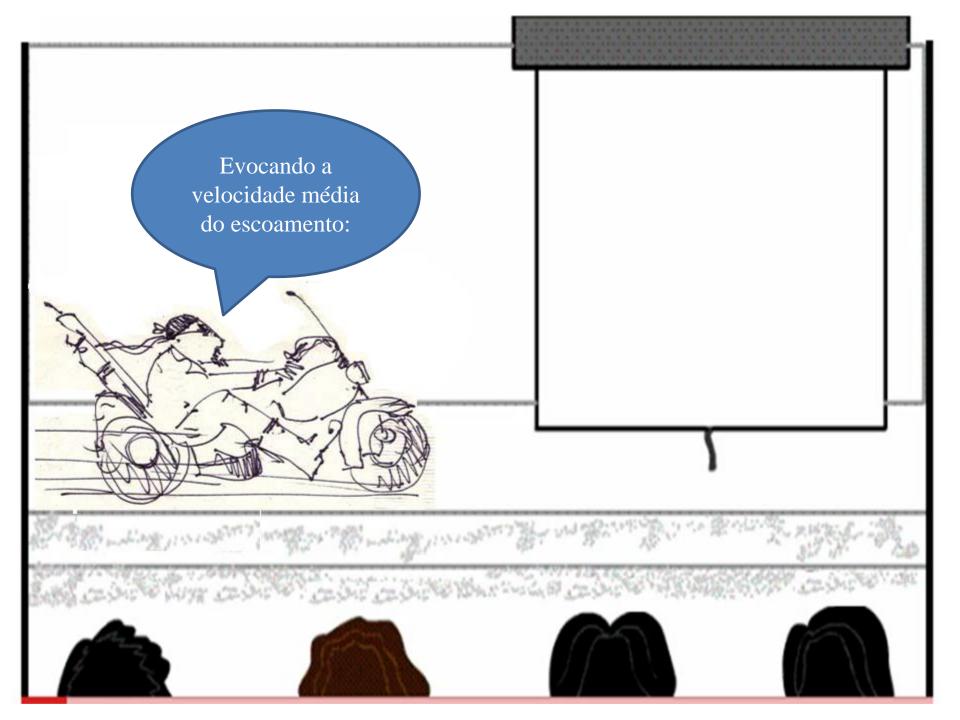




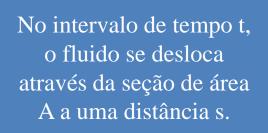
Vazão

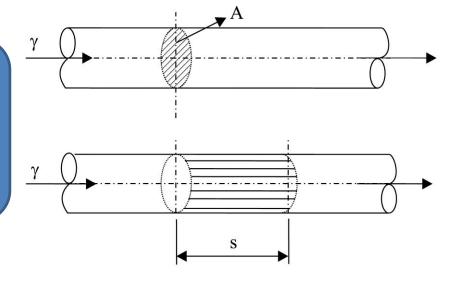
Define-se vazão em volume Q como o volume de fluido que atravessa uma certa seção do escoamento por unidade de tempo.

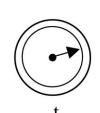


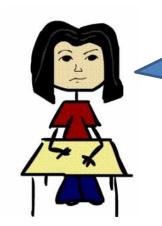


Relação entre a vazão e a velocidade do fluido







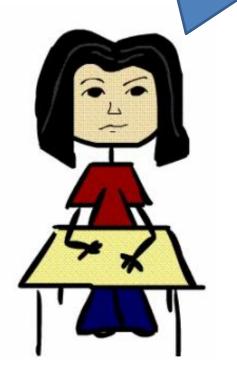


Qual o volume de fluido que atravessa a seção de área A no tempo t considerado?

Será:

$$V = s \times A$$

E se considerarmos por unidade de tempo?



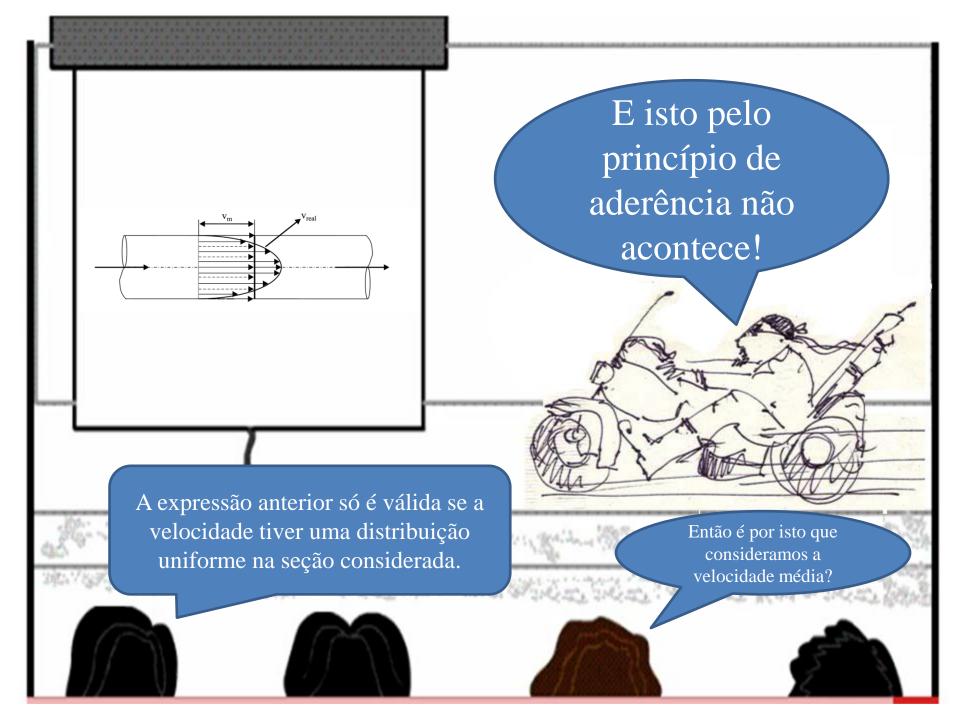
$$\frac{\mathbf{V}}{\mathbf{t}} = \mathbf{Q} = \frac{\mathbf{s} \times \mathbf{A}}{\mathbf{t}} = \mathbf{v} \times \mathbf{A}$$

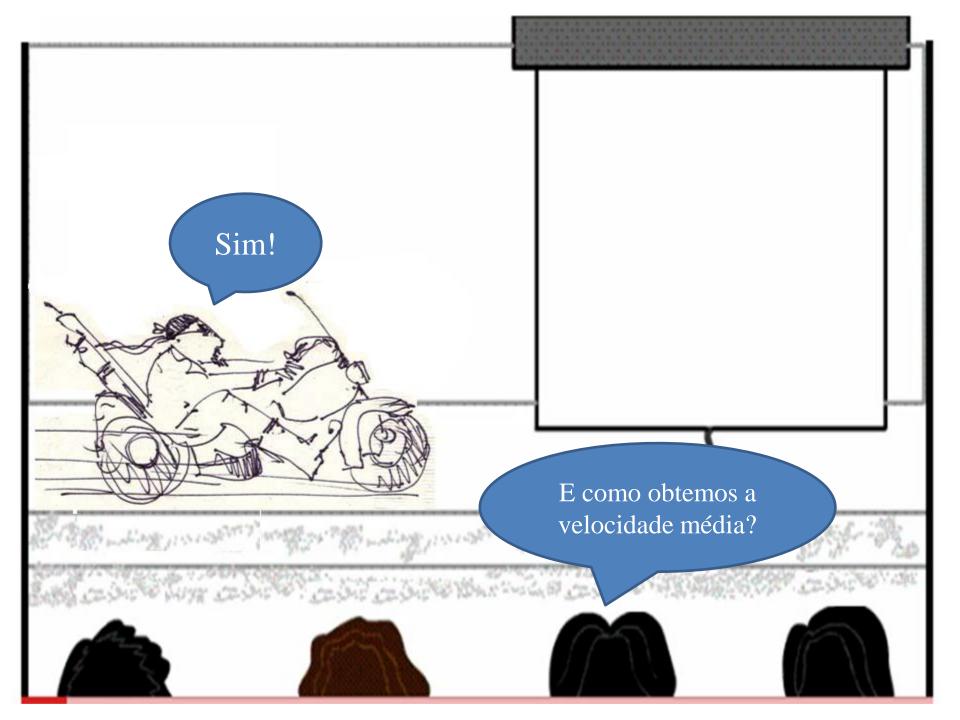
 $Q = v \times A$

Importante para o dimensionamento das tubulações!

Sim, mas lembrem que eu só vou com a velocidade média!

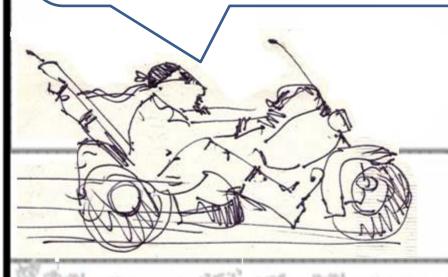
É aí que surge : o Alemão que vá!

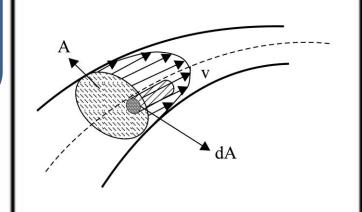


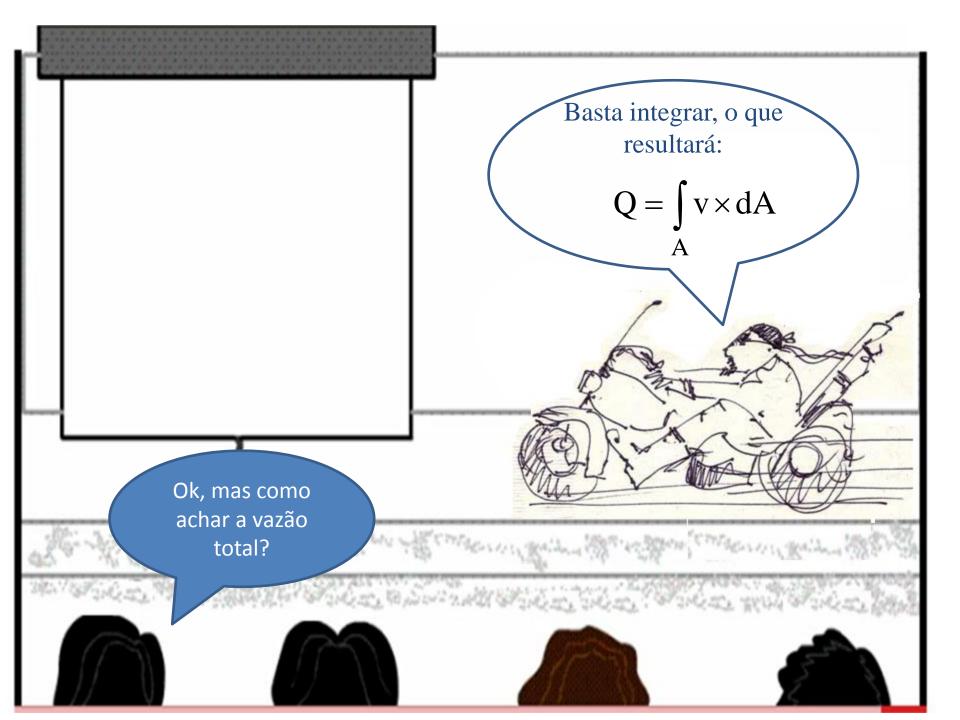


Considera-se um dA onde se tem uma única velocidade o que possibilita escrever:

$$dQ = v \times dA$$







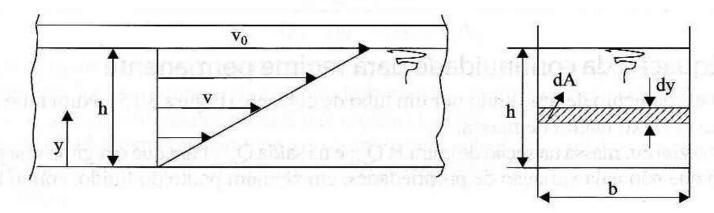
Sim, portanto: $Q = v_{m\text{\'e}dia} \times A = \int_{A} v \times dA$

$$\therefore v_{\text{m\'edia}} = \frac{1}{A} \times \int_{A} v \times dA$$

O cálculo da vazão tem que ser o mesmo nas duas expressões?

Exemplo:

Determinar a velocidade média correspondente ao diagrama de velocidades a seguir. Supor que não haja variação da velocidade segundo a direção normal ao plano da figura (escoamento bidimensional).



Sendo o diagrama linear, tem-se $v = C_1 y + C_2$, com C_1 e C_2 a serem determinados pelas condições de contorno.

Para y = 0

 $\mathbf{v} = \mathbf{0}$

logo: $C_2 = 0$

Para y = h

 $\mathbf{v} = \mathbf{v}_0$

logo: $v_0 = C_1 h$ e $C_1 = \frac{v_0}{h}$

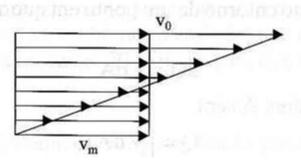
ou, finalmente,

$$v = v_0 \frac{y}{h}$$

A velocidade média será dada por:

$$v_{m} \frac{1}{A} \int_{A} v \, dA = \frac{1}{bh} \int_{0}^{h} v_{0} \frac{y}{h} b dy = \frac{v_{0}}{h^{2}} \frac{y^{2}}{2} \Big|_{0}^{h}$$
$$v_{m} = \frac{v_{0}}{2}$$

No diagrama a seguir está representado o resultado.



Vamos agora pensar em vazão em massa e vazão em peso

 $Q_m \rightarrow vazão em massa$

$$Q_{m} = \frac{massa}{tempo} = \frac{m}{t}$$

 $Q_G \rightarrow vazão em peso$

$$Q_{\rm m} = \frac{\rm peso}{\rm tempo} = \frac{\rm G}{\rm t}$$

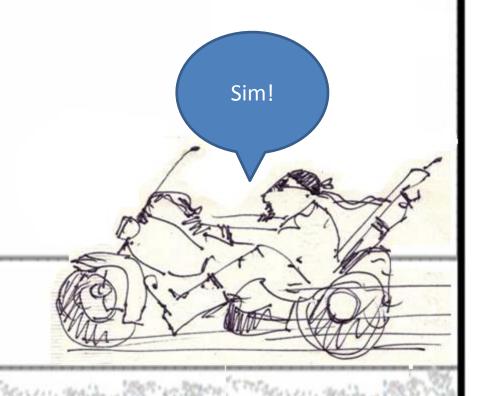
Posso relacioná-las com a vazão em volume?

$$Q_{m} = \frac{m}{t} = \frac{\rho \times V}{t} = \rho \times Q$$

$$Q_{G} = \frac{G}{t} = \frac{\gamma \times V}{t} = \gamma \times Q$$

$$Q_{G} = \rho \times g \times Q$$

The state of the s



Unidades no SI, MK*S e CGS

Variável	SI	MK* S	CGS
Q	m³/s	m³/s	cm³/s
Q_{m}	kg/s	utm/s	g/s
Q_{G}	N/s	kgf/s	Dina/s

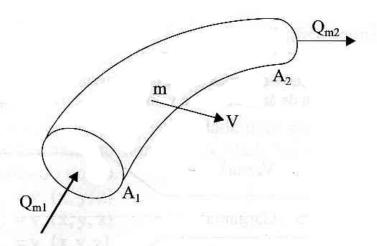
Relações:

$$1\frac{m^{3}}{s} = 10^{6} \frac{cm^{3}}{s} = 1000 \frac{L}{s}$$

$$1\frac{utm}{s} = 9,8 \frac{kg}{s} = 9800 \frac{g}{s}$$

$$1\frac{kgf}{s} = 9,8 \frac{N}{s} = 9,8 \times 10^{5} \frac{dina}{s}$$

Equação da continuidade para um escoamento incompressível — não podemos ter acúmulo nem falta de massa entre duas seções do escoamento.



Se, por absurdo, $Q_{m1} \neq Q_{m2}$, então em algum ponto interno ao tubo de corrente haveria ou redução ou acúmulo de massa.

Dessa forma, a massa específica nesse ponto variaria com o tempo, o que contrariaria a hipótese de regime permanente. Logo,

$$Q_{m1} = Q_{m2}$$
 ou $\rho_1 Q_1 = \rho_2 Q_2$ ou $\rho_1 v_1 A_1 = \rho_2 v_2 A_2$

Esta é a equação da continuidade para um fluido qualquer em regime permanente.

Se o fluido for incompressível, temos:

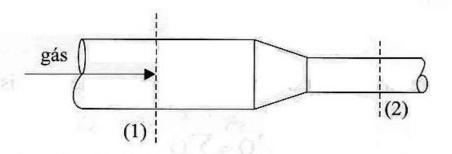
$$\rho_1 = \rho_2 = \rho = cte$$

$$\therefore Q_1 = Q_2$$

Outro exemplo:

Um gás escoa em regime permanente no trecho de tubulação da figura. Na seção (1), tem-se $A_1 = 20 \text{ cm}^2$, $\rho_1 = 4 \text{ kg/m}^3 \text{ e v}_1 = 30 \text{ m/s}$. Na seção (2), $A_2 = 10 \text{ cm}^2 \text{ e } \rho_2 = 12 \text{ kg/m}^3$.

Qual é a velocidade na seção (2)?



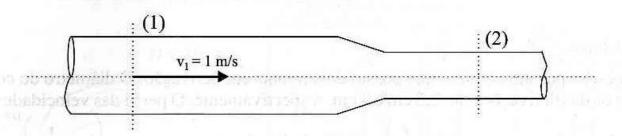
Solução

$$Q_{m1} = Q_{m2}$$
 Logo: $\rho_1 v_1 A_1 = \rho_2 v_2 A_2$

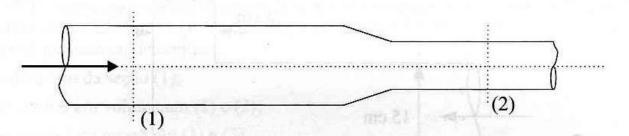
ou
$$\mathbf{v}_2 = \mathbf{v}_1 \frac{\mathbf{\rho}_1}{\mathbf{\rho}_2} \frac{\mathbf{A}_1}{\mathbf{A}_2}$$

portanto,
$$v_2 = 30 \frac{4}{12} \frac{20}{10} = 20 \text{ m/s}$$

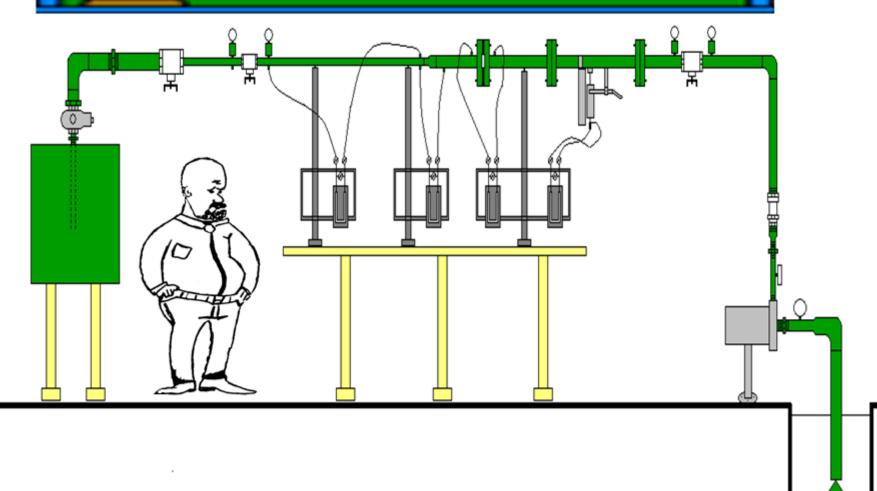
- 3.3 Um gás (γ = 5 N/m³) escoa em regime permanente com uma vazão de 5 kg/s pela seção A de um conduto retangular de seção constante de 0,5 m por 1 m. Numa seção B, o peso específico do gás é 10 N/m³. Qual será a velocidade média do escoamento nas seções A e B? (g = 10 m/s²)
- **Resp.:** $v_A = 20 \text{ m/s}$; $v_B = 10 \text{ m/s}$
- 3.4 Uma torneira enche de água um tanque, cuja capacidade é $6.000 \, L$, em 1h40min. Determinar a vazão em volume, em massa e em peso em unidade do SI se $\rho_{\rm H_2O} = 1.000 \, kg/m^3$ e g = $10 \, m/s^2$.
- **Resp.:** $Q = 10^{-3} \text{ m}^3/\text{s}$; $Q_m = 1 \text{ kg/s}$; $Q_G = 10 \text{ N/s}$
- No tubo da figura, determinar a vazão em volume, em massa, em peso e a velocidade média na seção (2), sabendo que o fluido é água e que $A_1 = 10 \text{ cm}^2 \text{ e } A_2 = 5 \text{ cm}^2$. ($\rho_{\text{H}_2\text{O}} = 1.000 \text{ kg/m}^3$, $g = 10 \text{ m/s}^2$)

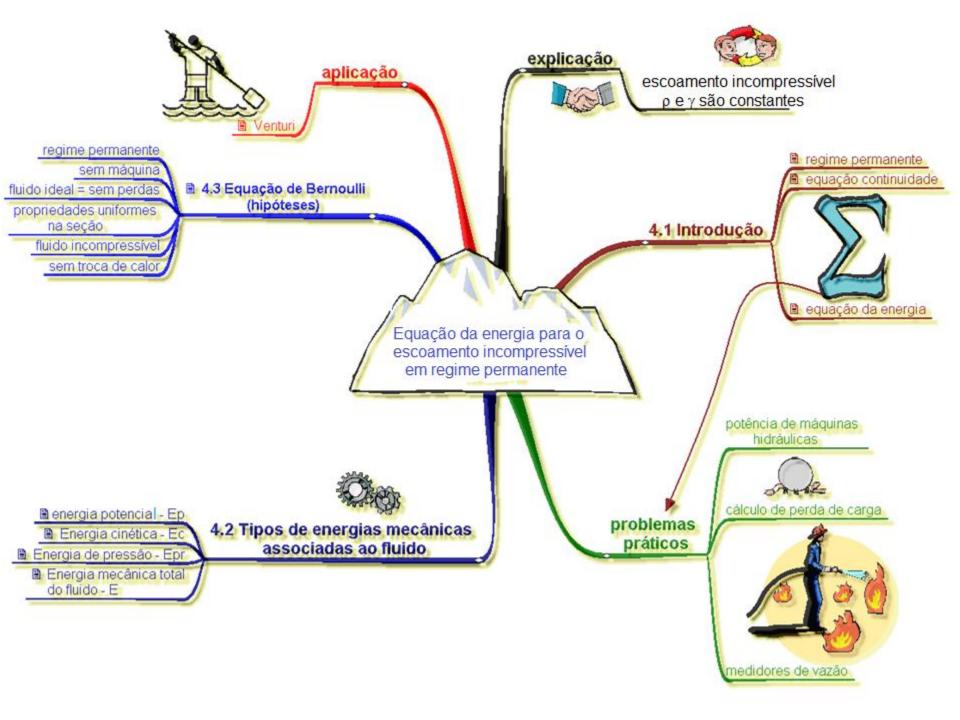


- **Resp.:** Q = 1 L/s; $Q_m = 1 \text{ kg/s}$; $Q_G = 10 \text{ N/s}$; $v_2 = 2 \text{ m/s}$.
 - 3.6 O ar escoa num tubo convergente. A área da maior seção do tubo é 20 cm² e a da menor é 10 cm². A massa específica do ar na seção (1) é 1,2 kg/m³, enquanto na seção (2) é 0,9 kg/m³. Sendo a velocidade na seção (1) 10 m/s, determinar as vazões em massa, volume, em peso e a velocidade média na seção (2).



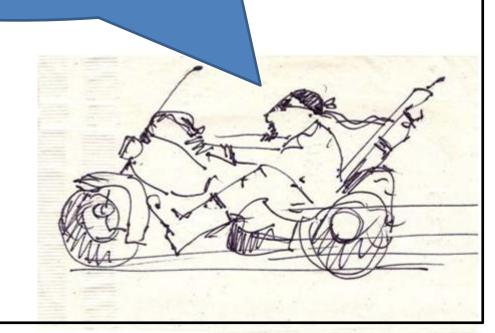
Vamos a partir deste ponto iniciar o estudo do capítulo 4: equação da energia para um escoamento incompressível em regime permanente





4.1 Introdução

No capítulo 3 fizemos um balanço de massa entre seções de um escoamento incompressível e em regime permanente, neste capítulo faremos um balanço de energias nas mesmas condições.



4.1 Introdução (cont.)

Regime permanente = as propriedades em uma dada seção do escoamento não se alteram com o decorrer do tempo, portanto, o tempo não é uma variável do estudo proposto nesta condição, além disto, tendo reservatório no estudo, o nível do fluido no mesmo permanece constante na condição de escoamento em regime permanente.

4.1 Introdução (cont.)

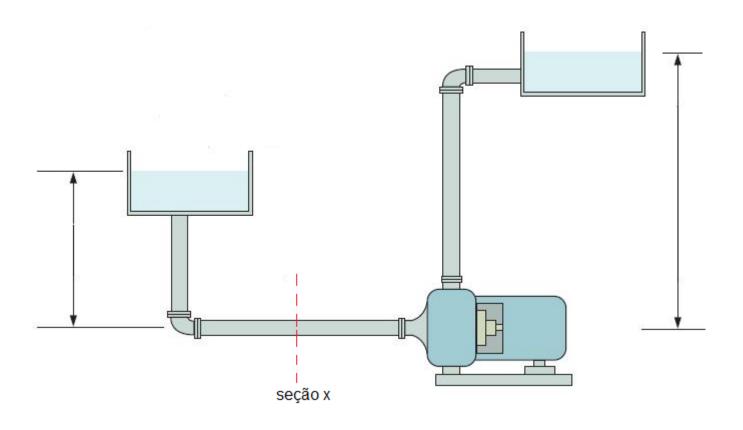
Na equação da continuidade se efetua um balanço do fluxo de massa no "sistema" estudado

$$\sum Q_{m} = \sum Q_{m}$$
entram saem

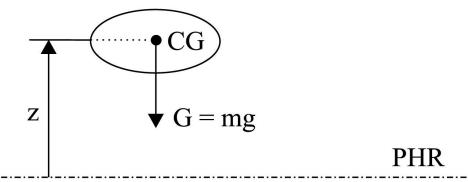
4.1 Introdução (cont.)

Equação da energia possibilita a realização de um balanço de energias entre duas seções de um tubo de corrente, ou seja de um sistema aberto formado exclusivamente de fluido.

4.2 Tipos de energias mecânicas associadas ao fluido

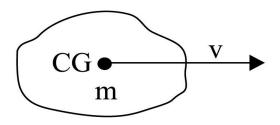


Energia potencial



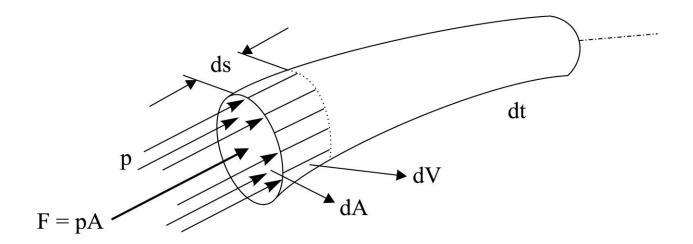
$$E_p = mgz$$

Energia cinética



$$E_c = \frac{mv^2}{2}$$

Energia de pressão

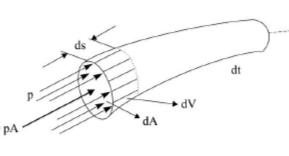


$$dw = Fds = pAds = pdV$$

$$dw = dE_{pr}$$

$$dE_{pr} = pdV :: E_{pr} = \int_{V} pdV$$

Resumindo:



EUIRP = escoamento

incompressivel

unidirecional

regime permanente

energia de pressão

$$E_{pr} = \int_{V} pdV$$

Energias mecânicas observadas em uma seção do EUIRP

23/09/2009 - v2

 $E_p = mgz$

energia potencial de posição

$$E_c = \frac{m \times v^2}{2}$$

energia cinética

Portanto a energia mecânica total do fluido em uma seção do escoamento unidirecional, incompressível e em regime permanente:

$$E = E_p + E_c + E_{pr}$$

$$E = mgz + \frac{mv^2}{2} + \int_{V} pdV$$

Considerando a pressão constante na seção, temos:

$$E = mgz + \frac{mv^2}{2} + pV = mgz + \frac{mv^2}{2} + p\frac{G}{\gamma}$$

Trabalhando no SI

$$[E] = [mgz] + \left[\frac{mv^2}{2}\right] + \left[p\frac{G}{\gamma}\right]$$

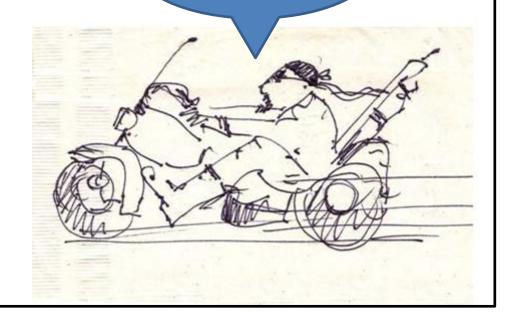
$$[E] = J$$

$$[mgz] = J$$

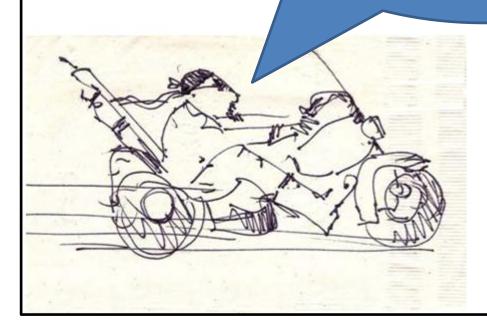
$$\left\lceil \frac{mv^2}{2} \right\rceil = J$$

$$\left| p \frac{G}{\gamma} \right| = J$$

Quem visualiza o joule?



Para eliminar a dificuldade de visualização anterior, iremos considerar a energia por unidade de peso e isto define o que denominamos de carga total (H), carga potencial, carga cinética e carga de pressão, respectivamente, onde a unidade será uma unidade de comprimento.



$$\frac{E}{G} = \frac{mgz}{G} + \frac{\frac{mv^2}{2}}{G} + \frac{p\frac{G}{\gamma}}{G}$$

$$H = z + \frac{v^2}{2g} + \frac{p}{\gamma}$$

regime permanente sem máquina fluido ideal = sem perdas

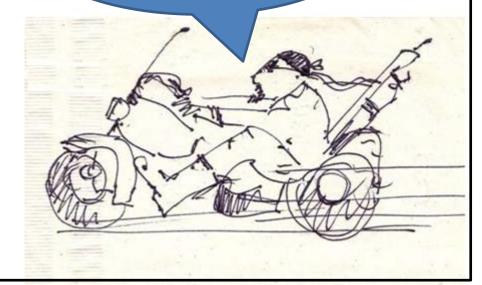
propriedades uniformes na seção

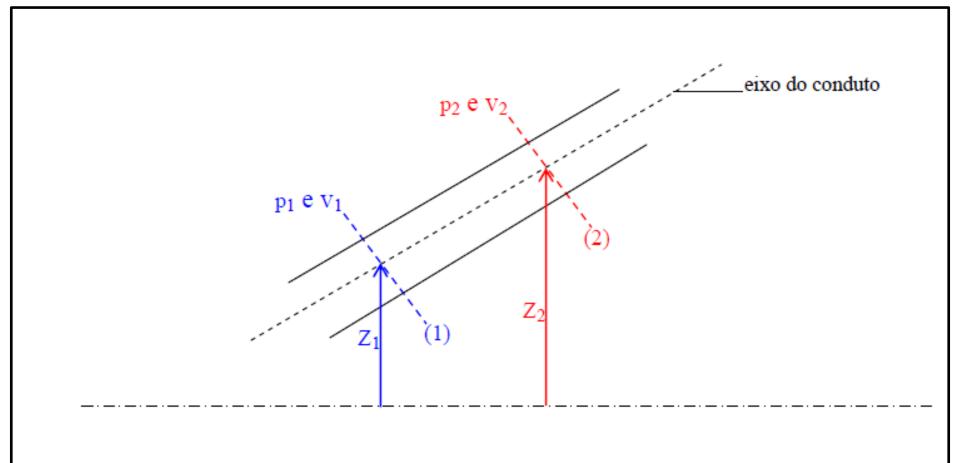
> fluido incompressível sem troca de calor

4.3 Equação de Bernoulli (hipóteses)

Com todas estas hipóteses teremos:

 $H_{inicial} = H_{final}$





$$z_{inicial} + \frac{p_{inicial}}{\gamma} + \frac{v_{inicial}^2}{2g} = z_{final} + \frac{p_{final}}{\gamma} + \frac{v_{final}^2}{2g}$$

Aplicação

Imagens e informação extraídas dos sítios: http://es.wikipedia.org/wiki/Efecto Venturi

http://www.ituflux.com.br

normalizados segundo a NBR ISO 5167-1 (ABNT, 1994)

Giovanni Battista Venturi, (1746–1822)

Em uma instalação hidráulica instalou-se um medidor de vazão do tipo Venturi para estimar a vazão de escoamento da água na instalação. Sabendo-se que Ø máx. do Venturi é igual a 20 mm, Ø garg do Venturi é igual 10 mm. Desnível do mercúrio no manometro diferencial 20 cm e que o coeficiente de vazão do venturi e 0,95 pede-se:

- a) a diferença de pressão entre a área máx. e a garganta
- b) a vazão teórica no venturi
- c) a vazão real do escoamento.



RESPOSTAS: $p_1 - p_G = 2.520 \text{ kgf/m}^2$; $Q_t = 5.76 \times 10^{-4} \text{ m}^3/\text{s} \text{ e } Q_R = 5.47 \times 10^{-4} \text{ m}^3/\text{s}$