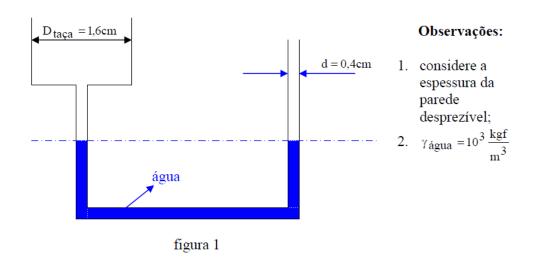

1ª Questão: Desejando-se determinar a massa específica de um dado óleo, obteve-se a configuração a seguir. Considerando a aceleração da gravidade igual a 9,8 m/s², especifique a massa específica do óleo no SI.


 2^a Questão: Para a situação representada a seguir onde é conhecida a leitura barométrica 695 mmHg, o peso específico do óleo igual a 8330 N/m³ e a leitura manométrica na seção (1) ($p_{m_1} = 21 \, kPa$), pede-se: a cota h_2 , a pressão originada pelo compressor (p_{ar}) na escala efetiva e absoluta e a leitura do manômetro metálico (p_m).

3ª Questão: Para a situação representada a seguir, sabendo que a pressão estática na seção (2) é 63504 N/m² e que a leitura barométrica é 700 mmHg, pede-se determinar a pressão estática absoluta na seção (1) em mca.

4ª Questão: Um estudante de engenharia se defrontando com a necessidade de determinar, tanto o peso específico, como o volume de certo fluido e não tendo nenhuma balança, nem dinamômetro e nem a possibilidade de conhecer a área da seção transversal do recipiente que contém o fluido, localizou no almoxarifado o dispositivo representado pela figura 1 e começou a procurar resolver o problema que lhe foi proposto.

No intuito de determinar o peso específico do fluido, pegou parte de seu volume e obteve a situação caracterizada pela figura 2 (Valor – 1,0)

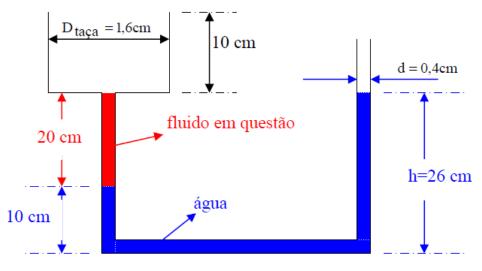
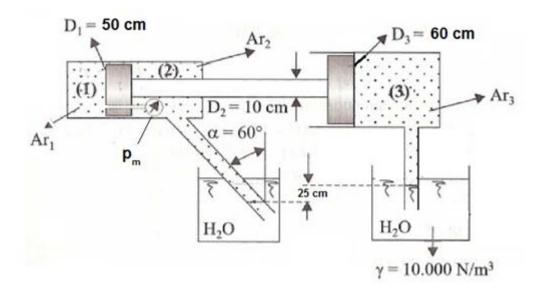



Figura 2

Já no intuito de determinar o volume total do fluido e observando que o mesmo possibilitava o preenchimento total da taça de diâmetro igual a 1,6 cm a partir da figura 2, o que originava uma nova altura (h') d'água, pede-se representar esta nova situação especificando, tanto a nova altura d'água como calculando o volume total do fluido em questão. (Valor-2,0)

 5^a Questão: Sabendo que o sistema representado a seguir encontra-se em equilíbrio estático, calcule a pressão do ar $_1$ (p_{ar1}). Dado: $p_m = 12,5$ kPa

