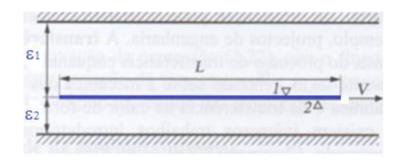
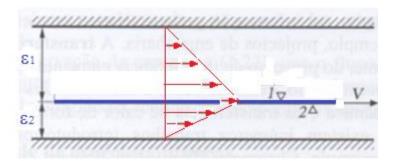

Exercício 24: São dadas duas placas planas paralelas à distância de 1 mm. A placa superior move-se com velocidade de 2 m/s, enquanto a inferior é fixa. Se o espaço entre a placas é preenchido com óleo de viscosidade igual a 8 x 10⁻³ Pa x s, qual será a tensão de cisalhamento que agirá no óleo?

Exercício 25: Uma câmara de pneu com volume interno igual a 0,09 m³, contém ar a 21°C e 30 lbf/pol² (abs). Determine a massa específica e o peso do ar contido na câmara.

Exercício 26: Numa tubulação escoa hidrogênio (K =1,4 e $R_{hidrogênio}$ =4122 m²/(s²K). Sabendo-se que em uma seção (1) da tubulação se tem, p_1 = 3 x 10⁵ N/m² (abs) e que ao longo da mesmo o escoamento é considerado isotérmico (temperatura constante), pede-se especificar a massa específica do gás na seção (2) onde se tem p_2 = 1,5 x 10⁵ N/m² (abs).


Exercício 27: A câmara de um dirigível de grande porte apresenta volume igual a 90000 m³ e contém hélio (R = 2077 m²/(s²K)) a 110 kPa (abs) e 15°C. Determine a massa específica e o peso total do hélio.

Exercício 28: A distribuição de velocidade do escoamento de um fluido Newtoniano (aquele que obedece a lei de Newton da viscosidade) num canal formado por duas placas paralelas e largas (veja figura) é dada pela equação:


$$v = \frac{3 \times v_m}{2} \times \left[1 - \left(\frac{y}{h} \right)^2 \right]$$
 onde v_m é a velocidade média do escoamento. O

fluido apresenta viscosidade dinâmica igual a 1,92 Pa x s. Admitindo que $v_m = 0.6$ m/s e h = 5mm, determine a tensão de cisalhamento, tanto na parede inferior do canal (y = -h), como no seu plano central (y = 0).

Exercício 29: Duas placas planas fixas paralelas de grandes dimensões estão separadas por um líquido de viscosidade igual a 0,825 Pa x s. Entre elas existe uma placa quadrada de lado igual a 200 mm, de espessura desprezível, que desloca-se com uma velocidade de 3 m/s e que se situa a 15 mm da placa superior e 6 mm da placa inferior, como mostrado a seguir. Admitindo que o perfil de velocidade é linear em cada par de placas, determine a força de resistência viscosa que surge na placa quadrada.

$$\begin{aligned} F_{\mu_{T}} &= F_{\mu_{1}} + F_{\mu_{2}} = \left(\tau_{1} + \tau_{2}\right) \times A_{contato} = \left(\mu \times \frac{v}{\varepsilon_{1}} + \mu \times \frac{v}{\varepsilon_{2}}\right) \times L^{2} \\ \therefore F_{\mu_{T}} &= 0.825 \times 3 \times \left(\frac{1}{0.015} + \frac{1}{0.006}\right) \times 0.2^{2} &\cong 23.1N \end{aligned}$$

Diagramas de velocidades

Exercício 30: A viscosidade do sangue pode ser determinada medindo-se a tensão de cisalhamento, τ, e a taxa de deformação por cisalhamento, que é representada pelo gradiente de velocidade (dv/dy), num viscosímetro. Utilizando os dados fornecidos na tabela determine se o sangue pode ser considerado como um fluido newtoniano e justifique adequadamente.

$\tau(\frac{N}{m^2})$	0,04	0,06	0,12	0,18	0,30	0,52	1,12	2,10
$\frac{dv}{dy}(s^{-1})$	2,25	4,50	11,3	22,5	45,0	90,0	225	450

1.11. Variação da viscosidade (μ)

A viscosidade tem comportamento diferente para os líquidos e gases, porém para ambos praticamente variam só com a temperatura.

1.11.1. Para os líquidos a viscosidade é inversamente proporcional a temperatura.

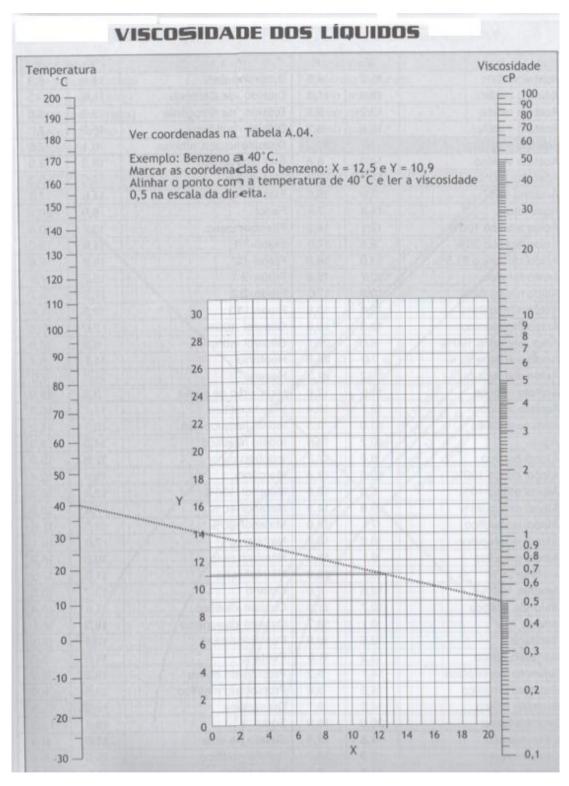
Para que possamos entender isto recordamos o escoamento de Couette, onde a camada superior tenderá, no seu movimento, a arrastar a que com ela se encontra em contato e lhe é imediatamente inferior. Esta, por sua vez, arrastará a sua inferior adjacente. Em consequência, a camada de fluido adjacente à parte inferior tenderá a travar a sua superior adjacente e assim sucessivamente. Esta descrição caracteriza o escoamento de Couette e pode seu visualizado na página: http://www.escoladavida.eng.br/mecflubasica/aula1 unidade1.htm.

Por outro lado, o descrito anterior também demonstra a existência do atrito interno, o qual origina a viscosidade dos líquidos e estas estão diretamente relacionadas com a atração entre as moléculas do mesmo e como esta atração diminuem com o aumento da temperatura, já que as moléculas ficam mais afastadas, podemos afirmar que a viscosidade dos líquidos diminui com o aumento da temperatura.

A equação 19, que é uma equação empírica, representa uma das possibilidades de estudarmos a variação da viscosidade em função da temperatura:

$$\ln \frac{\mu}{\mu_0} \cong a + b \times \left(\frac{T_0}{T}\right) + c \times \left(\frac{T_0}{T}\right)^2$$
 equação 19

 $\mu_0 \rightarrow \text{viscosidae}$ natemperatua absolutadere ferênci 273,15 K (0^0C)


As constantes **a**, **b** e **c** são específicas de cada líquido.

Para a água, temos²:
$$a = -1.94; b = -4.80; c = 6.74 e \mu_0 = 1.792 \times 10^{-3} \, Pa \times s$$

Outra forma de obter a viscosidade da água e observar a sua variação com a temperatura é através dos nomogramas a seguir³:

 $^{^2}$ Valores extraídos do livro: Mecânica dos Fluidos escrito por Frank M. White – 4^a edição – página 17 – com precisão de $\pm 1\%$

³ Ábacos e tabelas extraídos do livro: Manual de medição de vazão, escrito por Gérard J. Delmée – páginas 311 a 315

As coordenadas dos líquidos são fornecidas por tabela, sendo que para a água, temos: x = 10,2 e y = 13,0.

Nota: A viscosidade dos líquidos só sofre influência da pressão para valores muito grandes, exemplo: $\mu_{\acute{a}gua_10000atm} = 2 \times \mu_{\acute{a}gua_1atm}$

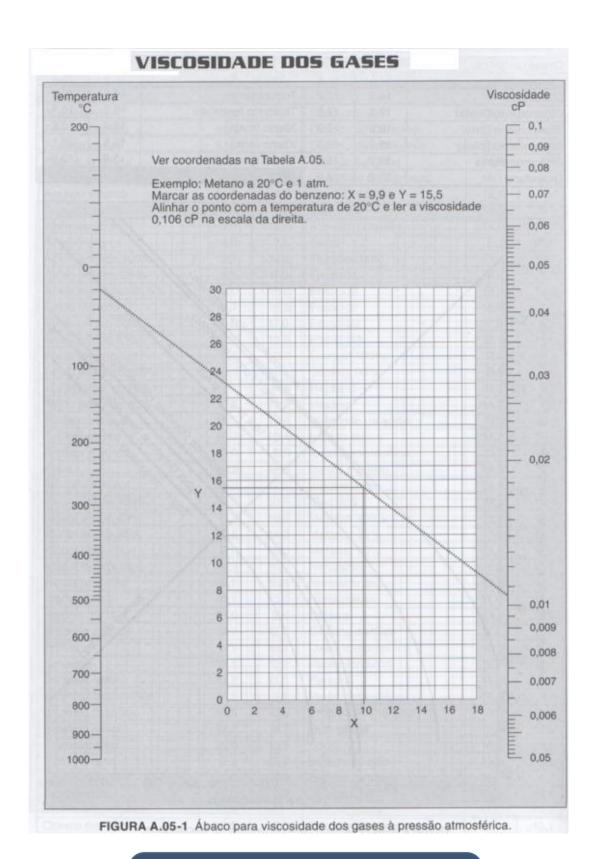
θ	$\rho_{\rm w}$		$ ho_{H_{\mathcal{Z}}}$
		$\nu_{\rm w}$	
		* 10 ⁶	
[°C]	[kg/m ³]	[m ² /s]	[kg/m ³]
0	999,8	1,791	13595
1	999,9	1,731	13593
2	1000,0	1,674	13590
3	1000,0	1,620	13588
4	1000,0	1,568	13585
5	999,9	1,520	13583
6	999,9	1,473	13580
7	999,9	1,429	13578
8	999,9	1,387	13575
9	999,8	1,346	13573
10	999,7	1,308	13570
11	999,6	1,271	13568
12	999,5	1,236	13565
13	999,4	1,202	13563
14	999,2	1,170	13561
15	999,1	1,140	13558
16	998,9	1,110	13556
17	998,8	1,082	13553
18	998,6	1,055	13551
19	998,4	1,029	13548
20	998,2	1,004	13546

θ	$\rho_{\rm w}$		$ ho_{Hg}$
		ν _w	
		* 106	
[°C]	[kg/m ³]	[m ² /s]	$[kg/m^3]$
21	998,0	0,980	13543
22	997,8	0,957	13541
23	997,5	0,934	13538
24	997,3	0,913	13536
25	997,0	0,892	13534
26	996,8	0,873	13531
27	996,5	0,854	13529
28	996,2	0,835	13526
29	995,9	0,817	13524
30	995,7	0,800	13521
31	995,3	0,784	13519
32	995,0	0,768	13516
33	994,7	0,753	13514
34	994,4	0,738	13511
35	994,0	0,723	13509
36	993,7	0,709	13507
37	993,3	0,696	13504
38	993,0	0,683	13502
39	992,6	0,670	13499
40	992,2	0,658	13497

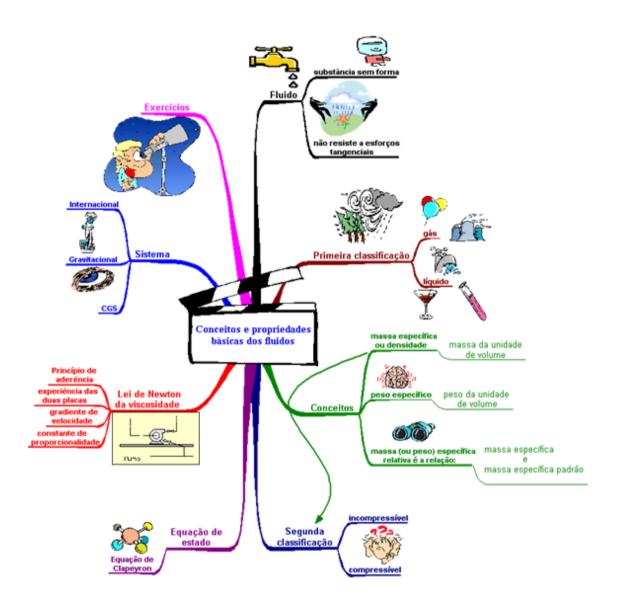
A tabela acima mostra alguns valores da propriedade d'água em função da temperatura.

1.11.2. Para os gases a viscosidade é diretamente proporcional a temperatura.

No caso dos gases a viscosidade é diretamente proporcional a energia cinética, portanto com o aumento da temperatura ocorre um aumento da energia cinética e em consequência da sua viscosidade.


Duas aproximações frequentes para especificação da viscosidade dos gases são obtidas pela lei de potência e a lei de Sutherland, respectivamente representadas pelas equações 20 e 21⁴:

⁴ Ambas extraídas do livro: Mecânica dos Fluidos escrito por Frank M. White – 4^a edição – página 17

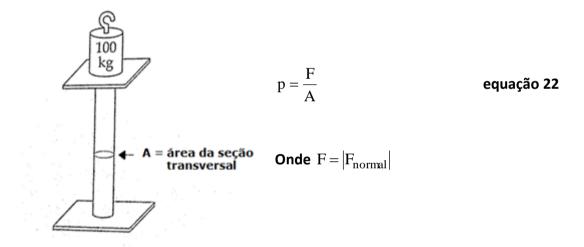

22

$$\frac{\mu}{\mu_0} = \left(\frac{T}{T_0}\right)^n$$
 equação 20
$$\frac{\mu}{\mu_0} = \frac{\left(\frac{T}{T_0}\right)^{\frac{3}{2}} \times \left(T_0 + S\right)}{T + S}$$
 equação 21

 $\mu_0 \to \text{viscosidae} conhecidae uma determinae demperatura absoluta} \\ \text{(geralment a 273,15 K), parao ar, temos: n = 0,7 e S = 110 K.}$

Síntese do que estudamos no capítulo 1

Capítulo 2 – Hidrostática


2.1.Introdução

Hidrostática que também pode ser chamada de *estática dos fluidos*, portanto tudo o que for estudado neste capítulo só valerá se o fluido estiver em repouso.

Além da restrição anterior, consideramos mais duas hipóteses: o *fluido* é considerado *contínuo*, o que garante a existência de matéria por menor que seja a porção do mesmo, portanto com esta hipótese passamos a considerar o *ponto fluido* tendo uma dimensão elementar (dA) e o *fluido* será considerado *incompressível*, sendo que esta hipótese garante que a *massa específica* e o *peso específico* do mesmo *são* considerados *constantes*.

2.2.Conceito de pressão

Evocando o que mencionamos sobre a tensão de pressão, consideramos a pressão média representada pela equação 22;

Por outro lado, no intuito de ampliar o conceito anterior, consideramos uma superfície de área A e nesta uma área elementar onde temos atuando uma força normal elementar (figura 4).

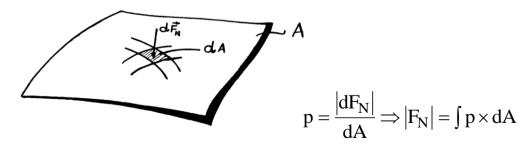
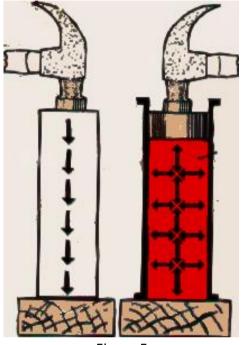



Figura 4

Notas:

1. Podemos observar pela condição do fluido estar em repouso, que ao considerarmos um ponto fluido, esta também estará em repouso e isto demonstra que a pressão é uma grandeza escalar já que não depende da direção (figura 5 e 6)

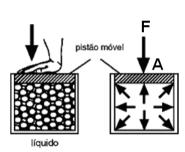
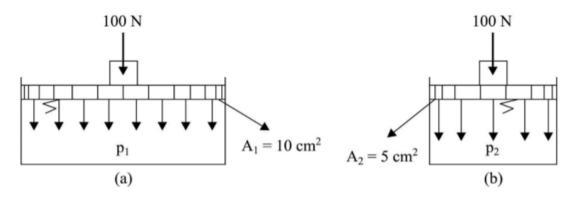
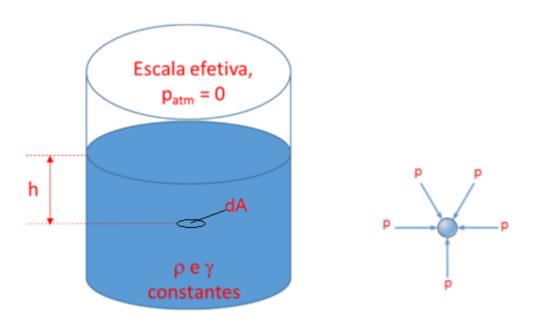


Figura 5

Figura 6

- **2.** Se a pressão for constante, resulta: $|F_N| = \int p \times dA = p \times \int dA = p \times A$
- 3. Devemos sempre saber que pressão é diferente de força, mesmo porque mesmas forças podem resultar em pressões diferentes (figura 7)




Figura 7

Em (a) temos uma pressão de 10 Pa e em (b) uma pressão de 20 Pa, portanto uma mesma força de 100 N originando pressões diferentes e *isto prova que força é diferente de pressão*.

2.3. Escala efetiva

É aquela que adota como zero a pressão atmosférica local, portanto nesta escala podemos ter pressões negativas (menores que a pressão atmosférica), nulas (iguais a pressão atmosférica) e positivas (maiores que a pressão atmosférica).

2.4. Pressão em um ponto fluido pertencente a um fluido continuo, incompressível e em repouso.

Considerando um ponto fluido como sendo um dA (hipótese do continuo), podemos afirmar que sobre ele existe um volume elementar dV, o qual pode ser determinado por: $dV = dA \times h$,

Existindo um volume dV existe também um peso elementar dG, que pode ser determinado pelo peso específico (constante pela hipótese do fluido incompressível): $dG = \gamma \times dV = \gamma \times dA \times h$.

Dividindo os dois membros por dA não alteramos a igualdade e chegamos a equação 23 que define a *pressão em um ponto fluido na escala efetiva*:

$$\frac{dG}{dA} = p = \frac{\gamma \times dA \times h}{dA} \therefore p = \gamma \times h$$
 equação 23

h → denominad **d**ecargade pressão