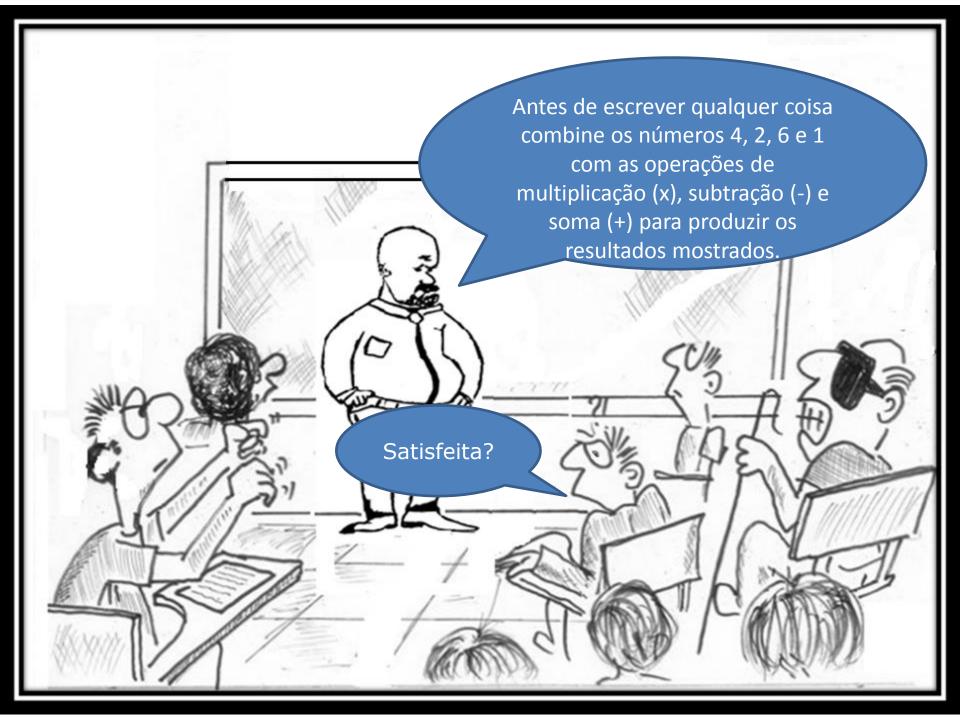
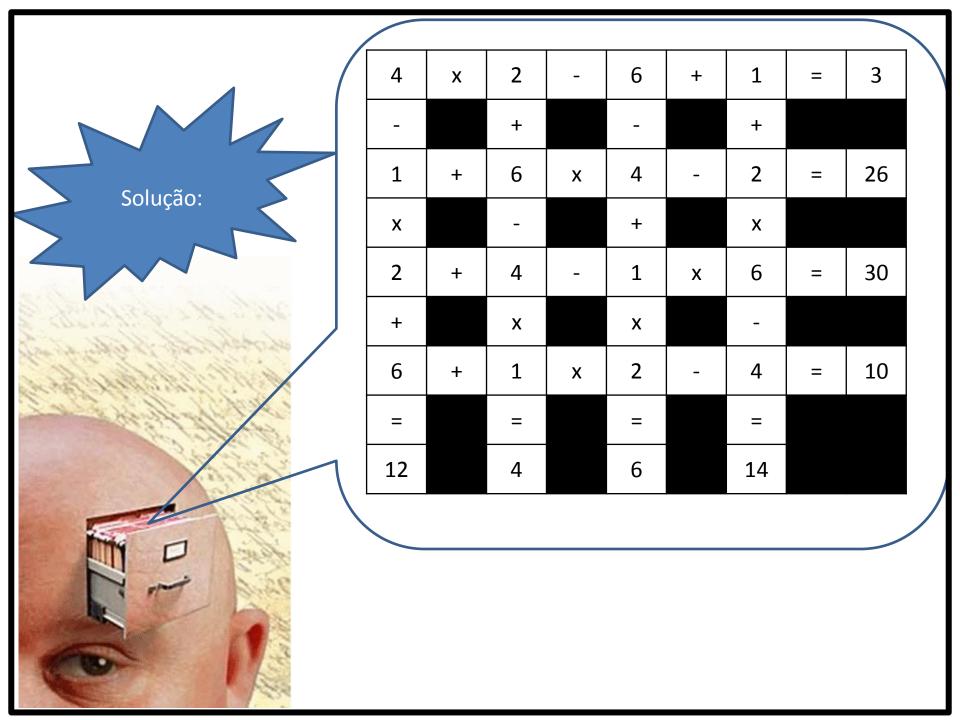
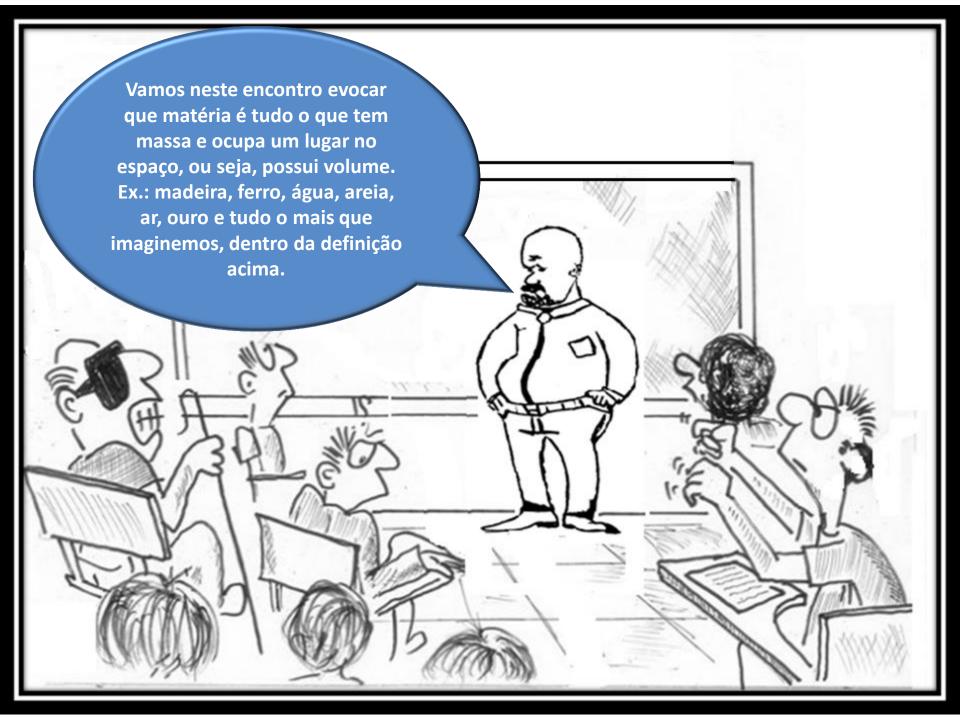

Segunda aula de FT

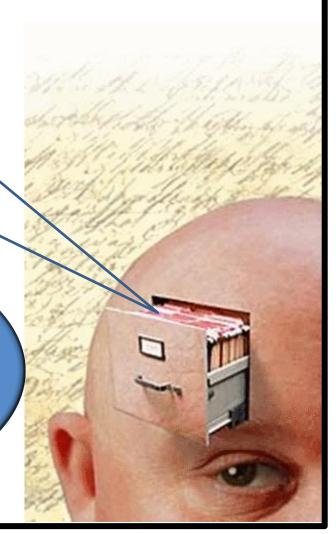
Segundo semestre de 2013

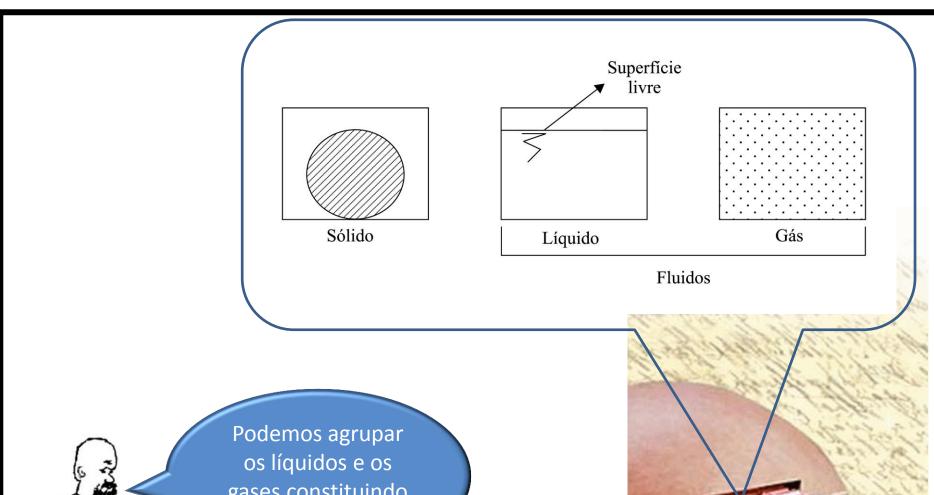



Primeiro desafio: as fileiras e colunas possuem a mesma quantidade de números e sinais matemáticos, mas eles foram arrumados em uma ordem diferente a cada vez. Descubra a ordem correta para se chegar nos resultados horizontais e verticais mostrados ao lado.

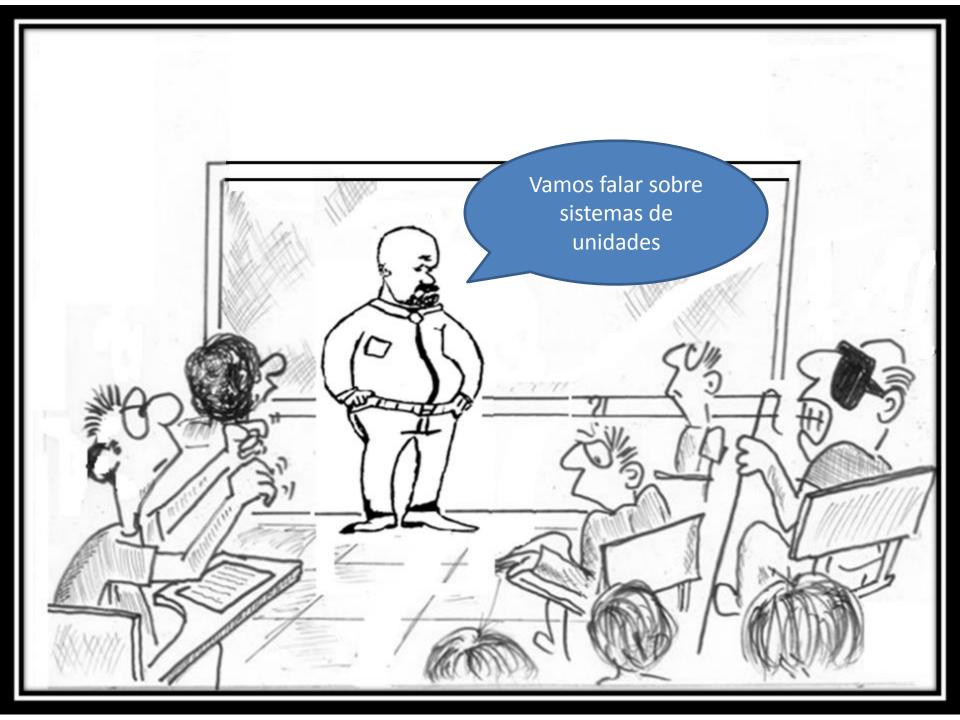


4	х	2	-	6	+	1	II	3
							II	26
							II	30
							II	10
II		II		II		II		
12		4		6		14		




Devemos lembrar ainda que:

- 1. A ausência total de matéria é o vácuo absoluto.
- 2. Corpo é qualquer porção limitada de matéria. Ex.: tábua de madeira, barra de ferro, cubo de gelo, pedra.
- 3. Objeto é um corpo fabricado ou elaborado para ter aplicações úteis ao homem. Ex.: mesa, lápis, estátua, cadeira, faca, martelo.



A matéria é composta por pequenas partículas e, de acordo com o maior ou menor grau de agregação entre elas, pode ser encontrada em três estados: sólido, líquido e gasoso.

O sistema internacional de unidades de medidas físicas atual, denominado de SI, deriva do sistema métrico.

Este sistema é constituído por sete (7) grandezas fundamentais

Sistema Internacional de Unidades - SI

Grandezas fundamentais

Comprimento	Nome	Símbolo	Dimensão e r	epresentação
Comprimento	metro	m	[L]	L,h,r,x,
Massa	quilograma	kg	[M]	M
Tempo	segundo	S	[T]	Т
Corrente elétrica	ampere	Α	[A]	1,1
Temperatura termodinâmica	Kelvin	K	[K]	Т
Quantidade de substância	mole	mol	[mol]	N
Intensidade Iuminosa	Candela	cd	[cd]	I _v

As demais grandezas são denominadas de grandezas derivadas e devem ser definidas em função das grandezas fundamentais.

Múltiplos decimais e sub-múltiplos das unidades do SI

Prefixos do SI						
múltiplos				s	ub-múlti	plos
fator	nome	símbolo		fator	nome	símbolo
10 ¹	deca	da		10 ⁻¹	deci	d
10 ²	hecto	h		10 ⁻²	centi	С
10 ³	quilo	k		10 ⁻³	mili	m
10 ⁶	mega	M		10 ⁻⁶	micro	μ
10 ⁹	giga	G		10 ⁻⁹	nano	n
10 ¹²	tera	T		10 ⁻¹²	pico	p
10 ¹⁵	peta	P		10 ⁻¹⁵	femto	f
10 ¹⁸	ega	E		10 ⁻¹⁸	atto	a
10 ²¹	zetta	Z		10 ⁻²¹	zepto	z
10 ²⁴	yotta	Y		10 ⁻²⁴	yocto	у

Extraído da página: http://www.iqsc.usp.br/cursos/quimicageral/si2.htm

Grandeza derivada	Unidade	Símbolo	Dimensão
Área	Metro quadrado	m²	L ²
Volume	Metro cúbico	m³	L ³
Velocidade	Metro por segundo	m/s	LT ⁻¹
Aceleração	Metro por segundo ao quadrado	m/s²	LT ⁻²
Massa específica	Quilograma por metro cúbico	Kg/m³	ML ⁻³
Força	newton	N	MLT ⁻²
Peso específico	newton por metro cúbico	N/m³	ML ⁻² T ⁻²
Pressão	Newton por metro quadrado ou pascal	N/m² ou Pa	ML ⁻¹ T ⁻²

Mas existem outros sistemas, certo?

Sistema CGS	$\overline{}$
	S
Sistellia Cus	ע

Grandezas fundamentais

Comprimento	Nome	Símbolo	Dimensão e r	epresentação
Comprimento	centímetro	cm	[L]	L,h,r,x,
Massa	grama	g	[M]	M
Tempo	segundo	S	[T]	Т

Sistema MK*S						
Grandezas fundamentais						
Comprimento	Nome	Símbolo	Dimensão e r	representação		
Comprimento	metro	m	[L]	L,h,r,x,		
Força	Quilograma força	kgf	[F]	F		
Tempo	segundo	S	[T]	Т		

Exemplos de grandezas derivadas no CGS

Grandeza derivada	Unidade	Símbolo	Dimensão
Área	Centímetro quadrado	cm²	L ²
Volume	Centímetro cúbico	cm³	L ³
Velocidade	Centímetro por segundo	cm/s	LT ⁻¹
Aceleração	Centímetro por segundo ao quadrado	cm/s²	LT ⁻²
Massa específica	grama por centímetro cúbico	g/cm³	ML ⁻³
Força	dina	dyn	MLT ⁻²
Peso específico	dina por centímetro cúbico	dyn/cm³	ML ⁻² T ⁻²
Pressão	dina por centímetro quadrado	dyn/cm²	ML ⁻¹ T ⁻²

Exemplos de grandezas derivadas no MK*S

Grandeza derivada	Unidade	Símbolo	Dimensão
Área	metro quadrado	m²	L ²
Volume	metro cúbico	m³	L ³
Velocidade	metro por segundo	m/s	LT ⁻¹
Aceleração	metro por segundo ao quadrado	m/s²	LT ⁻²
Massa específica	Unidade técnica de massa por metro cúbico	utm/m³	F L ⁻⁴ T ²
Massa	Unidade técnica de massa	utm	F L ⁻¹ T ²
Peso específico	Quilograma força por metro cúbico	kgf/m³	F L ⁻³
Pressão	Quilograma força por metro quadrado	kgf/m²	F L ⁻²

Relações entre as unidades

Grandeza derivada	SI	Relação com o CGS	Relação com o MK*S
Área	m²	$1 \text{ m}^2 = 10^4 \text{ cm}^2$	1 m²
Volume	m³	$1 \text{ m}^3 = 10^6 \text{ cm}^2$	1 m³
Velocidade	m/s	$1 \text{ m/s} = 10^2 \text{ cm/s}$	1 m/s
Aceleração	m/s²	$1 \text{ m/s}^2 = 10^2 \text{ cm/s}^2$	1 m/s²
Massa específica	Kg/m³	$1 \text{ kg/m}^3 = 10^{-3} \text{ g/cm}^3$	9,8 kg/m³ = 1 utm/m³
Massa	kg	$1 \text{ kg} = 10^3 \text{ g}$	9,8 kg = 1 utm
Peso específico	N/m³	1 N/m³ = 10 ⁻¹ dyn/cm³	9,8 N/m³ = 1 kgf/m³
Pressão	N/m²	$1 \text{ N/m}^2 = 10 \text{ dyn/cm}^2$	$9.8 \text{ N/m}^2 = 1 \text{ kgf/m}^2$