### Experiência de Reynolds.

1º - Objetivo: determinar a vazão de forma direta e calcular a velocidade média do escoamento através dela.



$$Q = \frac{Volume}{tempo} = \frac{V}{t}$$

$$Q = v \times A = v \times \frac{\pi \times D^{2}}{4}$$

$$\therefore v = \frac{4 \times Q}{\pi \times (10 \times 10^{-3})^{2}}$$

O Maurício está comigo determinando a vazão de forma direta e mostrando o tubo de vidro.

O diâmetro do tubo de vidro, onde visualizamos o tipo de escoamento, é igual a 10 mm.



2º - Objetivo: ler a temperatura da água em Fahrenheit e transformá-la em graus Celsius





$$t_{\rm C} = \frac{5}{9} \times \left( t_{\rm F} - 32 \right)$$

 $t_C$  = temperatura em Celsius

 $t_F$  = temperatura em Fahrenheit

3º - **Objetivo:** determinar a massa específica e a viscosidade cinemática da água em função da temperatura.

| Propriedades | do mercúrio e | em função da | temperatura |
|--------------|---------------|--------------|-------------|

| _    |                      |                     |                      |
|------|----------------------|---------------------|----------------------|
| θ    | $\rho_{\rm w}$       |                     | $\rho_{H_Z}$         |
|      |                      | $\nu_{\rm w}$       |                      |
|      |                      | * 10 <sup>6</sup>   |                      |
| [°C] | [kg/m <sup>3</sup> ] | [m <sup>2</sup> /s] | [kg/m <sup>3</sup> ] |
| 0    | 999,8                | 1,791               | 13595                |
| 1    | 999,9                | 1,731               | 13593                |
| 2    | 1000,0               | 1,674               | 13590                |
| 3    | 1000,0               | 1,620               | 13588                |
| 4    | 1000,0               | 1,568               | 13585                |
| 5    | 999,9                | 1,520               | 13583                |
| 6    | 999,9                | 1,473               | 13580                |
| 7    | 999,9                | 1,429               | 13578                |
| 8    | 999,9                | 1,387               | 13575                |
| 9    | 999,8                | 1,346               | 13573                |
| 10   | 999,7                | 1,308               | 13570                |
| 11   | 999,6                | 1,271               | 13568                |
| 12   | 999,5                | 1,236               | 13565                |
| 13   | 999,4                | 1,202               | 13563                |
| 14   | 999,2                | 1,170               | 13561                |

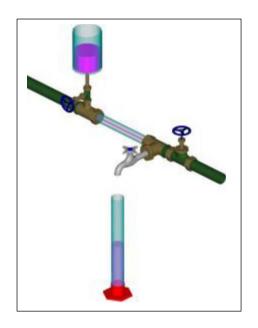
| θ    | $\rho_{\rm w}$       |                     | $ ho_{H_Z}$ |
|------|----------------------|---------------------|-------------|
|      |                      | $V_{\rm w}$         |             |
|      |                      | * 106               |             |
| [°C] | [kg/m <sup>3</sup> ] | [m <sup>2</sup> /s] | $[kg/m^3]$  |
| 21   | 998,0                | 0,980               | 13543       |
| 22   | 997,8                | 0,957               | 13541       |
| 23   | 997,5                | 0,934               | 13538       |
| 24   | 997,3                | 0,913               | 13536       |
| 25   | 997,0                | 0,892               | 13534       |
| 26   | 996,8                | 0,873               | 13531       |
| 27   | 996,5                | 0,854               | 13529       |
| 28   | 996,2                | 0,835               | 13526       |
| 29   | 995,9                | 0,817               | 13524       |
| 30   | 995,7                | 0,800               | 13521       |
| 31   | 995,3                | 0,784               | 13519       |
| 32   | 995,0                | 0,768               | 13516       |
| 33   | 994,7                | 0,753               | 13514       |
| 34   | 994,4                | 0,738               | 13511       |

#### Extraído da página:

http://www.escoladavida.eng.br/mecfluquimica/planejamento 22012/propriedades do mercurio 22012.htm

Poderíamos determinar a massa específica d'água e sua viscosidade dinâmica pelas expressões a seguir:

$$\begin{split} & \rho = 1000 - 0.01788 \times \left| \text{temperatun em} \ ^{0}\text{C} - 4 \right|^{1.7} \\ & [\rho] = \frac{kg}{m^{3}} \\ & \ln \frac{\mu}{\mu_{0}} \cong -1.704 - 5.306 \times z + 7.003 \times z^{2} \\ & \to \mu_{0} = 1.788 \times 10^{-3} \, \frac{kg}{m \times s} \\ & \to z = \frac{273(K)}{T(K)} \end{split}$$


 ${f 4^0}$  - **Objetivo:** relacionar massa específica ( ${f p}$ ) e viscosidade dinâmica ( ${f \mu}$ ) para obter a viscosidade cinemática ( ${f v}$ )

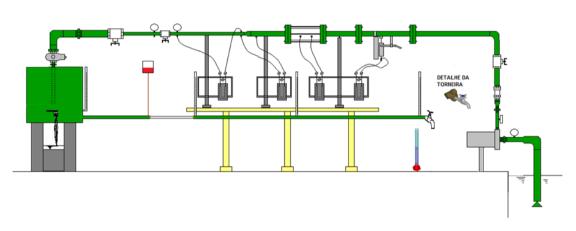
$$v = \frac{\mu}{\rho} : \frac{1}{v} = \frac{\rho}{\mu} \to [v]_{SI} = \frac{m^2}{s} = \frac{\frac{kg}{m^3}}{\frac{(N \times s)}{m^2}}$$

**5º - Objetivo:** calcular o número de Reynolds e utilizá-lo para classificar o escoamento incompressível em laminar, transição e turbulento.

$$\begin{split} Re &= \frac{\rho \times v \times D_H}{\mu} = \frac{v \times D_H}{\nu} \\ Re &\leq 2000 \Rightarrow LAMINAR \\ 2000 &< Re < 4000 \Rightarrow TRANSIÇÃO \\ Re &\geq 4000 \Rightarrow TURBULENTO \end{split}$$

 $\mathbf{6^0}$  - Objetivo: comparar a classificação anterior com o visualizado na bancada












Esquematicamente a experiência é realizada no trecho da bancada representado a seguir:





Nesta experiência deveremos preencher a tabela a seguir:

| Ensaios | Q        | ٧   | R <sub>e</sub> | Tipo de Escoamento | Tipo de Escoamento |
|---------|----------|-----|----------------|--------------------|--------------------|
|         | m $^3/s$ | m/s | F°L°T°         | Pelos Cálculos     | Visualizado        |
| 1       |          | "   |                |                    |                    |
| 2       |          |     |                |                    |                    |
| 3       |          |     |                |                    |                    |
| 4       |          |     |                |                    |                    |
| 5       |          |     |                |                    |                    |

## Mais informações consulte:

http://www.escoladavida.eng.br/mecflubasica/Apostila/Unidade%203/Simulacao%20de%20Reynolds%20un%203.pdf http://www.escoladavida.eng.br/mecflubasica/experiência\_de\_Reynolds.pdf

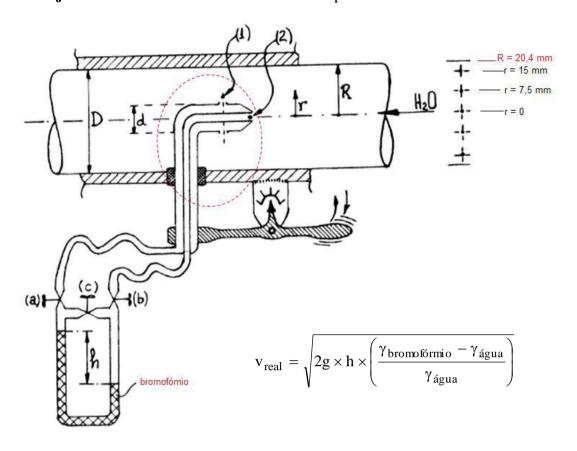
### Experiência do tubo de Pitot.

1º - Objetivo: mostrar uma nova determinação direta da vazão.

# Já a determinação das vazões nas bancadas de 1 a 6 é obtida no tanque de distribuição

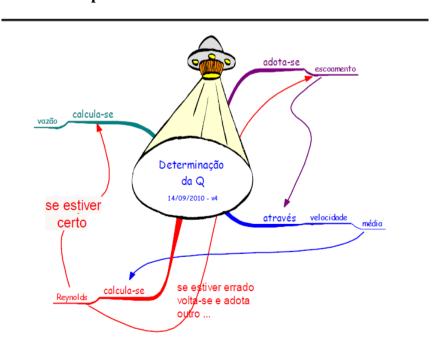


$$Q = \frac{volume}{tempo} = \frac{\Delta h \times A_{tanque}}{t}$$


A ÁREA DA SEÇÃO TRANSVERSAL DO TANQUE DE DISTRIBUIÇÃO DEVE SER DETERMINADA EM TODAS AS BANCADAS.

| Area do tanque de<br>distribuição (m²) |        |  |  |  |
|----------------------------------------|--------|--|--|--|
| 1                                      | 0,5483 |  |  |  |
| 2                                      | 0,5476 |  |  |  |
| 3                                      | 0,5498 |  |  |  |
| 4                                      | 0,5535 |  |  |  |
| 5                                      | 0,5520 |  |  |  |
| 6                                      | 0,5506 |  |  |  |
| 7                                      | 0,5491 |  |  |  |
| 8                                      | 0,5461 |  |  |  |

As áreas são fornecidas para otimizar o tempo da experiência




2º - Objetivo: determinar a velocidade real de um ponto fluido através do tubo de Pitot



3º - Objetivo: determinar a vazão do escoamento através do tubo de Pitot

Primeira possibilidade: o tubo de Pitot está instalado no eixo do tubo



Calculamos a velocidade máxima do escoamento:

$$v_{max} = \sqrt{2g \times h \times \left(\frac{\gamma_{bromof\acute{o}rmio} - \gamma_{\acute{a}gua}}{\gamma_{\acute{a}gua}}\right)}$$

Adotamos escoamento turbulento ( $\text{Re} \geq 4000$ ), isto porque este tem maior probabilidade de ocorrer e isto permite calcular a velocidade média do escoamento, já que para tubos de seção circular e forçada, temos:

$$v_{\text{média}} = \frac{49}{60} \times v_{\text{max}}$$
.

Com a velocidade média, calculamos o número de Reynolds:  $Re = \frac{v \times D_H}{v}$  e este dando maior ou igual a 4000, indica que a adoção foi correta o que permite determinar a vazão do escoamento:  $Q = v \times A$ .

Segunda possibilidade: o tubo de Pitot não foi instalado no eixo.

# Se o Pitot não estiver no eixo da tubulação

Adota-se o escoamento, por exemplo o turbulento, onde se sabe que:

$$v_{real} = v_{m\acute{a}x} \times (1 - \frac{r}{R})^{1/7}$$

Tendo-se a velocidade real calcula-se a velocidade máxima e média:

$$v_{\text{média}} = \frac{49}{60} \times v_{\text{máx}}$$

Com a velocidade média verifica-se o Reynolds.

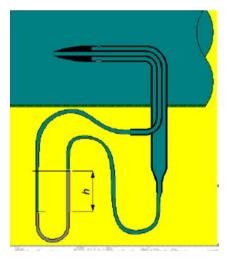
# Se não for turbulento:

Repete-se o procedimento anterior adotando-se o escoamento laminar, onde se tem:

$$v_{real} = v_{m\acute{a}x} \times \left[1 - \left(\frac{r}{R}\right)^2\right]$$

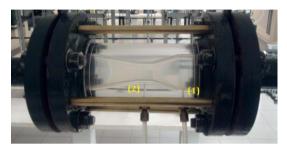
$$v_{\text{média}} = \frac{v_{\text{máx}}}{2}$$

Tendo a velocidade média calculamos a vazão e é esta que deve ser comparada com a obtida no tanque.

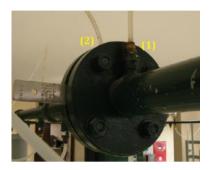

### **4<sup>0</sup> - Objetivo:** preencher a tabela de dados a seguir:

| Exp. PITOT |         | Tabela Rascunho |    |  |
|------------|---------|-----------------|----|--|
| ensaio     | posição | r               | h  |  |
| -          | -       | mm              | mm |  |
| 1          | parede  | + 20,5          | 0  |  |
| 2          | Α       | + 15,0          |    |  |
| 3          | В       | + 7,50          |    |  |
| 4          | С       | 0               |    |  |
| 5          | D       | - 7,50          |    |  |
| 6          | Е       | - 15,0          |    |  |
| 7          | parede  | - 20,5          | 0  |  |
| Δh =       |         | t =             |    |  |

Nesta experiência você também deve preencher a tabela de resultado a seguir e comparar as vazões determinada no tanque e a determinada pelo tubo de Pitot, registrando a diferença entre elas.

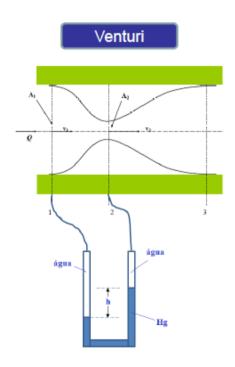

| Exp.   | PITOT   | Tabela Desenvolvimento |                |                  |     |
|--------|---------|------------------------|----------------|------------------|-----|
| ensaio | posição | r h                    |                | √ h              | V   |
| -      | _       | mm                     | mm             | m <sup>1/2</sup> | m/s |
| 1      | parede  | + 20,5                 | 0              |                  | 0   |
| 2      | Α       | + 15,0                 |                |                  |     |
| 3      | В       | + 7,50                 |                |                  |     |
| 4      | С       | 0                      |                |                  |     |
| 5      | D       | - 7,50                 |                |                  |     |
| 6      | E       | - 15,0                 |                |                  |     |
| 7      | parede  | - 20,5                 | 0              |                  | 0   |
| Δh =   | cm      | t =                    | S              | V <sub>m</sub> = | m/s |
| Q =    |         | L/s (utiliza           | ida no ensaio) | Re =             |     |

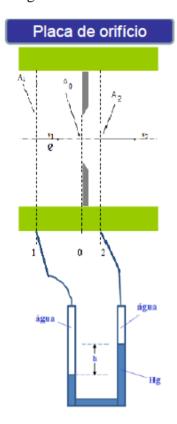





### Experiência dos medidores de vazão.

# 1º - Objetivo: visualizar os medidores: Venturi e placa de orifício





Venturi



Placa de orifício

Esquematicamente os medidores estão representados a seguir:



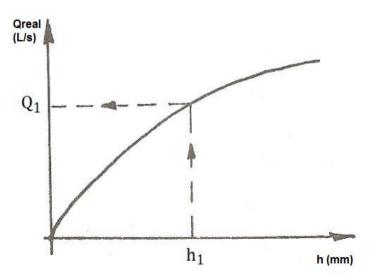


- 2º Objetivo: calcular a vazão teórica através do medidor.
  - a. Para o Venturi (bancadas ímpares) como o  $C_C = 1,0$ , temos:

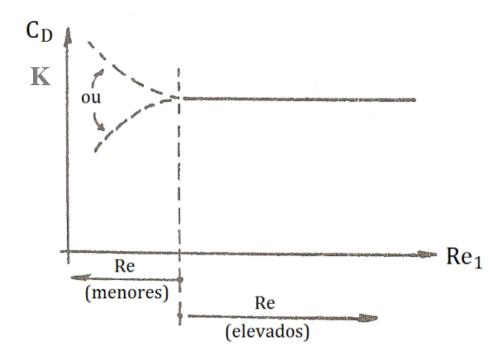
$$Q_{te\acute{o}rica} = A_{m\acute{i}nima} \times \sqrt{\frac{2gh \times \left(\frac{\gamma_{Hg} - \gamma_{H2O}}{\gamma_{H2O}}\right)}{1 - \left(\frac{D_{m\acute{i}nimo}}{D_{aproximaç\~ao}}\right)^4}} = \frac{\pi \times D_G^2}{4} \times \sqrt{\frac{2gh \times \left(\frac{\gamma_{Hg} - \gamma_{H2O}}{\gamma_{H2O}}\right)}{1 - \left(\frac{D_G}{D_1}\right)^4}}$$

b. Para a placa de orifício (bancadas pares) como o  $C_{\rm C}$  é diferente de 1,0, temos:

$$Q_{teórica} = A_{mínima} \times \sqrt{2gh \times \left(\frac{\gamma_{Hg} - \gamma_{H2O}}{\gamma_{H2O}}\right)} = \frac{\pi \times D_0^2}{4} \times \sqrt{2gh \times \left(\frac{\gamma_{Hg} - \gamma_{H2O}}{\gamma_{H2O}}\right)}$$


**4º - Objetivo:** determinar a vazão real no tanque.

$$Q_{real} = \frac{\Delta h \times A_{tanque}}{t}$$


**5º - Objetivo:** calcular o coeficiente de vazão (Cd) para o Venturi e o coeficiente K para a placa de orifício

$$K = Cd = \frac{Q_{real}}{Q_{teórica}}$$

 ${f 6}^0$  - Objetivo: obter a curva de calibração do medidor de vazão



### **7º - Objetivo:** obter a curva característica do medidor



Importante salientar que o número de Reynolds na seção (1) é denominado de Reynolds de aproximação e é sempre calculado com a vazão real.

## **8**<sup>0</sup> - **Objetivo:** preencher a tabela a seguir:

| Exp. MED.VAZÃO |     | Tabela Desenvolvimento |     |    |                     | _   |                 |
|----------------|-----|------------------------|-----|----|---------------------|-----|-----------------|
| grandezas      | Δh  | t                      | Q   | h  | C <sub>D</sub> ou K | ٧1  | Re <sub>1</sub> |
| unidades       | cm  | s                      | L/s | mm |                     | m/s |                 |
| 1              |     |                        |     |    |                     |     |                 |
| 2              |     |                        |     |    |                     |     |                 |
| 3              |     |                        |     |    |                     |     |                 |
| 4              |     |                        |     |    |                     |     |                 |
| 5              |     |                        |     |    |                     |     |                 |
| 6              |     |                        |     |    |                     |     |                 |
| Medidor tip    | 00: |                        |     |    |                     |     |                 |