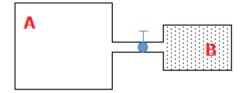
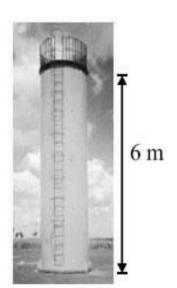

## 1.11. Exercícios complementares


**Exercício 24**: Um gás natural tem peso específico relativo igual a 1,2 em relação ao ar a 10<sup>5</sup> Pa (abs) e 15 °C. Qual é o peso específico desse gás nas mesmas condições de pressão e temperatura? Qual é a constante R desse gás?

Dados:  $R_{ar} = 287 \text{ m}^2/(s^2*\text{K}) \text{ e g} = 9.8 \text{ m/s}^2$ .

- **Exercício 25**: A viscosidade cinemática de um óleo leve é 0,033 m²/s e a sua massa específica relativa é 0,86. Determinar a sua viscosidade dinâmica no SI e no CGS sabendo que a massa específica padrão da água é 1000 kg/m³.
- **Exercício 26**: São dadas duas placas planas paralelas à distância de 2 mm. A placa superior move-se com um a velocidade constante de 4 m/s, enquanto a inferior é fixa. Se o espaço entre as duas placas for preenchido com óleo de viscosidade cinemática igual a 10<sup>-5</sup> m²/s e massa específica igual a 830 kg/m³, qual será a tensão de cisalhamento que agirá no óleo?




Exercício 27: Ligam-se dois vasos (A e B) através de um tubo com torneira. O vaso A está vazio, ao passo que B contém ar à pressão de 60 kPa (abs). Supondo que a capacidade do vaso A seja duas vezes maior que a do B e admitindo que sejam desprezíveis as capacidades do tubo de ligação e da torneira, determinar a pressão final (comum aos 2 vasos), depois de aberta a torneira, mantida a temperatura (processo isotérmico)



- **Exercício 28**: Um certo gás a 40 °C, estando submetido a uma pressão de 21,9 \* 10<sup>5</sup> Pa (abs), tem um peso específico igual a 362 N/m³. Qual será o valor da sua constante R no SI?
- **Exercício 29**: A viscosidade cinemática de um óleo é 0,028 m²/s e seu peso específico relativo igual a 0,85. Determinar a viscosidade dinâmica no SI e no CGS. Dado:  $\rho_{\text{água}} = 1000 \text{ kg/m}^3$
- **Exercício 30**: Certa massa gasosa ocupa um volume de 560 cm³ sob determinados valores de pressão e temperatura. Tomando outra pressão, igual a 1,4 vezes a anterior em um processo isotérmico, determine o novo volume da massa gasosa.
- **Exercício 31**: Um dado fluido apresenta a massa específica igual a 750 kg/m³ e viscosidade dinâmica igual a 1,5 centipoise, pede-se determinar a sua viscosidade cinemática no sistema internacional e em centistoke.
- **Exercício 32**: A pressão no pneu de um automóvel depende da temperatura do ar do pneu. Quando a temperatura do ar é de 25 °C, o calibrador indica 210 kPa (abs). Se o volume do pneu é de 0,025 m³, determine o aumento de pressão no pneu quando a temperatura do ar no pneu aumenta para 50 °C.
- **Exercício 33**: Um fluido escoa entre duas placas planas horizontais fixas e distantes entre si de 4 cm. O eixo y, que é ortogonal às placas, tem origem na superfície de contato entre a placa inferior e o fluido. Sabendo que as partículas fluidas obedecem à equação:  $v = -5y^2 + 20y$  com "y" em cm e "v" em cm/s, pede-se: o gradiente de velocidade junto a placa inferior e a tensão de cisalhamento que ocorre para y = 1 cm para um fluido com viscosidade dinâmica igual a  $10^{-2} \, \frac{N \times s}{m^2}$ .
- Exercício 34: A câmara de um dirigível de grande porte apresenta volume igual a 98000 m³ e contém hélio (R = 2077 m²/(s²K)) a 115 kPa (abs) e 16°C. Determine a massa específica e o peso total do hélio.

**Exercício 35**: Duas placas planas paralelas estão situadas a 3 mm de distância. A placa superior move-se com velocidade constante de 4m/s, enquanto que a inferior está fixa. Considerando que um óleo ( $\nu = 0.15$  Stokes (ou cm²/s) e  $\rho = 905$  kg/m³) ocupa o espaço entre elas, determinar a tensão de cisalhamento que agirá sobre o óleo.

- **Exercício 36**: A figura abaixo mostra um reservatório de água na forma de um cilindro circular reto, com 6 m de altura. Quando está completamente cheio, o reservatório é suficiente para abastecer, por um dia, 1000 casas cujo consumo por casa é de 500 litros de água. Sabendo que ele está situado na cidade de Amparo que tem a latitude igual a -22,7°, altitude de 630,9 m e que a água pode ser considerada a uma temperatura de 25°C, pede-se:
  - a. o diâmetro aproximado da base do reservatório;
  - b. o peso que o volume total da água exerce na base do reservatório.



## Dados:

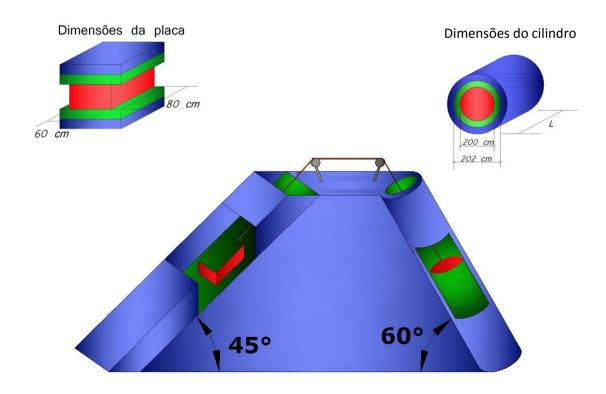
$$\rho_{\text{água}} = 1000 - 0.01788 \times |\text{tc} - 4|^{1.7}$$
tc  $\rightarrow$  temperatura em  $^{0}$ C

$$\left[\rho_{\text{água}}\right] = \frac{kg}{m^3}$$

$$g = 9.8 \frac{m}{s^2}$$

**Exercício 37**: Um cilindro vertical de vidro, contém 900 mL de água a 10°C e nesta situação a altura da coluna de água é de 90 cm. No caso da água e do seu recipiente serem aquecidos até 80°C e supondo que neste processo não ocorreu nenhuma evaporação, qual seria a nova altura da água?

## Dados:


$$\rho_{\acute{a}gua} = 1000 - 0.01788 \times \left| tc - 4 \right|^{1.7}$$

tc 
$$\rightarrow$$
 temperatura em  ${}^{0}C$ ;  $\left[\rho_{\text{água}}\right] = \frac{kg}{m^{3}}$ 

Exercício 38: Um gás natural tem massa específica relativa ( $\rho_R$ ) igual a 0,65 em relação ao ar que está na pressão de 10<sup>5</sup> Pa (abs) e temperatura de 15 °C. Qual é o peso específico do gás natural em N/m³ nas mesmas condições de pressão e temperatura? Qual a constante R do gás natural? Dados:  $R_{ar} = 287 \text{ m}^2/(s^2 \text{ s}^2 \text{ K})$  e g= 9,8 m/s².

**Exercício 39**: Numa tubulação escoa hidrogênio (K =1,4 e  $R_{hidrogênio}$ =4122 m²/(s²K). Sabendo-se que em uma seção (1) da tubulação se tem,  $p_1$  = 3 x 10<sup>5</sup> N/m² (abs) e que ao longo da mesmo o escoamento é considerado isotérmico (temperatura constante), pede-se especificar a massa específica do gás na seção (2) onde se tem  $p_2$  = 1,5 x 10<sup>5</sup> N/m² (abs).

**Exercício 40:** Uma placa retangular (1) sobe sobre um plano inclinado como mostra a figura. Sabendo-se que as polias e os fios são ideais e que utilizou-se um fluido lubrificante de viscosidade cinemática igual a 40 cSt, pede-se determinar o peso do cilindro no sistema internacional. **Dados:**  $\varepsilon_{placa} = 1$  cm;  $\gamma_r = 8$ ;  $\gamma_{H2O} = 1000$  kgf/m³; g = 9.8 m/s²;  $G_{placa} = 15$  kgf;  $L = 1/\pi$  m; v = 1.5 m/s).

