







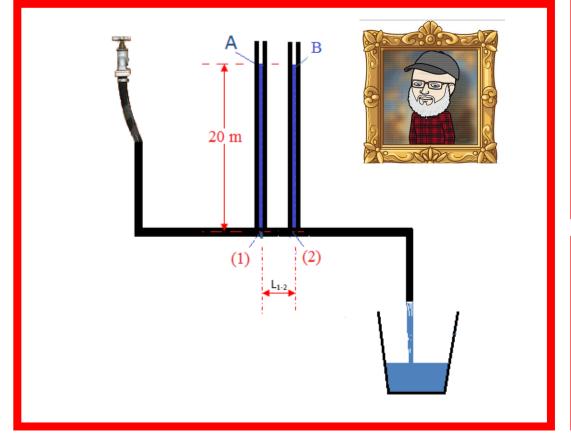

# Determinando a vazão de forma direta:

Q = 
$$\frac{V}{t} = \frac{26}{20} = 1.3 \frac{L}{s} \Rightarrow A = 5.57 \text{cm}^2 = \text{cte}$$
  

$$\therefore V_1 = V_2 = \frac{Q}{A} = \frac{1.3 \times 10^{-3}}{5.57 \times 10^{-4}} \approx 2.334 \frac{\text{m}}{\text{s}}$$

# Pela equação de Bernoulli, temos:

$$H_1 = H_2 \Rightarrow z_1 + \frac{p_1}{\gamma} + \frac{v_1^2}{2g} = z_2 + \frac{p_2}{\gamma} + \frac{v_2^2}{2g}$$


$$z_1 = z_2 \therefore \frac{p_1}{\gamma} = \frac{p_2}{\gamma} = h_2 = 20m$$

$$p_1 = p_2 \Rightarrow h = 0$$



A única possibilidade de ocorrer na prática seria as seções (1) e (2) estarem muito próximas, ou seja, L<sub>1-2</sub> ser desprezível.

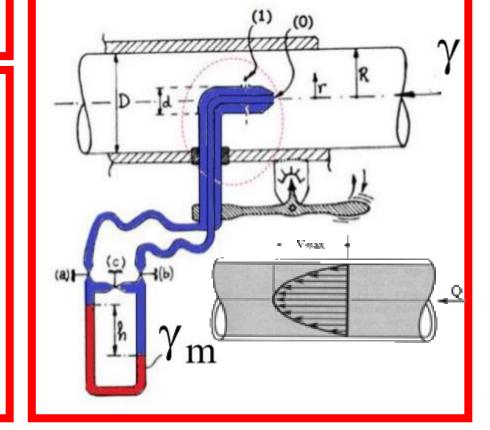




Mas volto a perguntar, esta condição é observada em alguma aplicação?





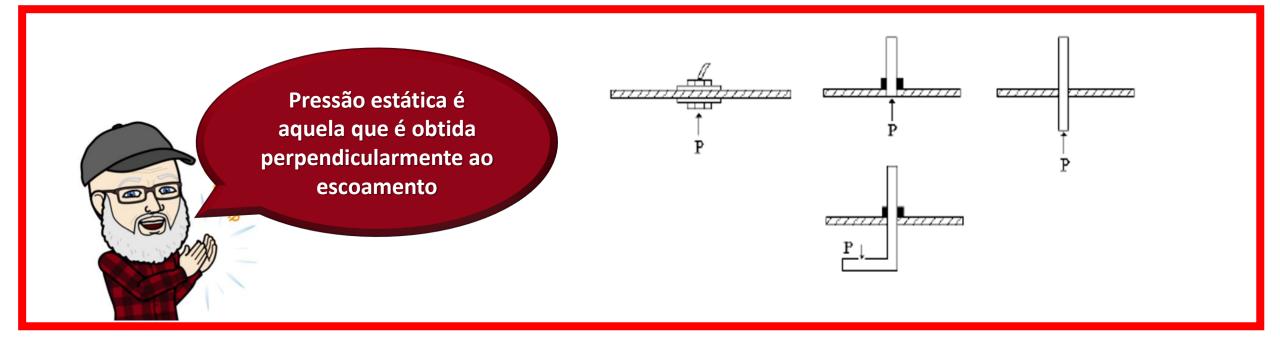

Respondo esta sua pergunta no próximo item.

#### 4.6. Tubo de Pitot



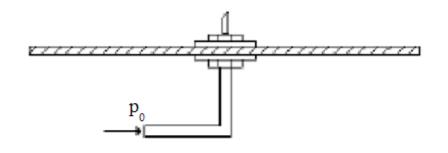
O instrumento foi apresentado em 1732 por Henry de Pitot, que afirmou: "a ideia deste instrumento é tão simples e natural que no momento que eu o concebi, corri imediatamente a um rio para fazer o primeiro experimento com um tubo de vidro".





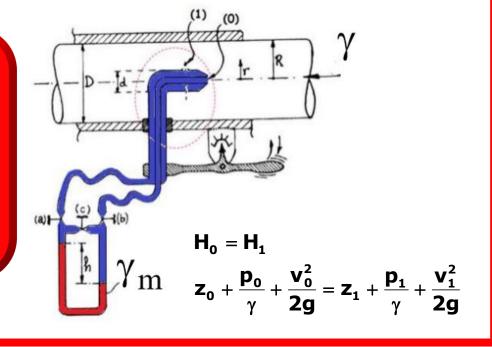



O Pitot, representado pela figura ao lado, possibilita a determinação da velocidade real do escoamento, mas para isto, tem que ser instalado sempre no sentido contrário ao escoamento





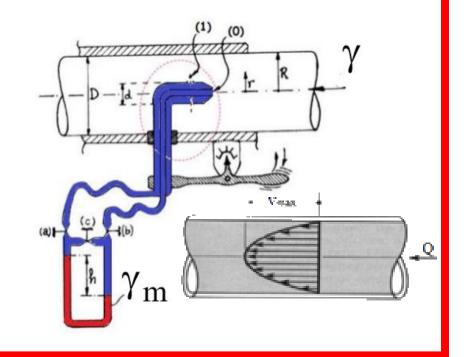



Pressão total é obtida somando-se a pressão estática com a pressão dinâmica






Para qualquer Pitot, como a distância entre as seções (0) e (1) é desprezível, podemos aplicar a equação da energia que se transforma na equação de Bernoulli já que para a situação a perda de carga é desprezível. Através da equação de Bernoulli é possível a determinação da velocidade real referente ao ponto (1)



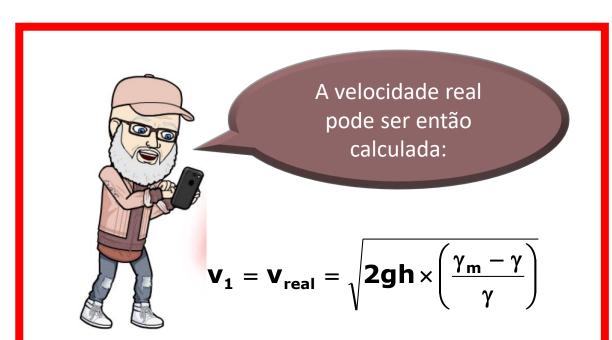
Como  $z_0 = z_1$  e no ponto (0) ocorre a transformação da energia cinética em energia de pressão, resulta  $v_0 = 0$ , resultando:

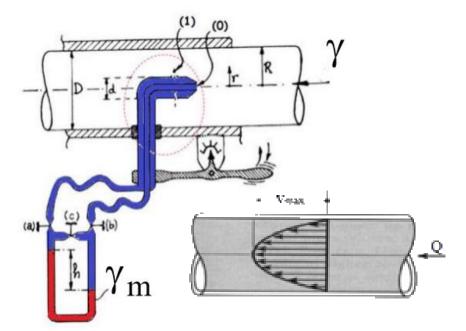


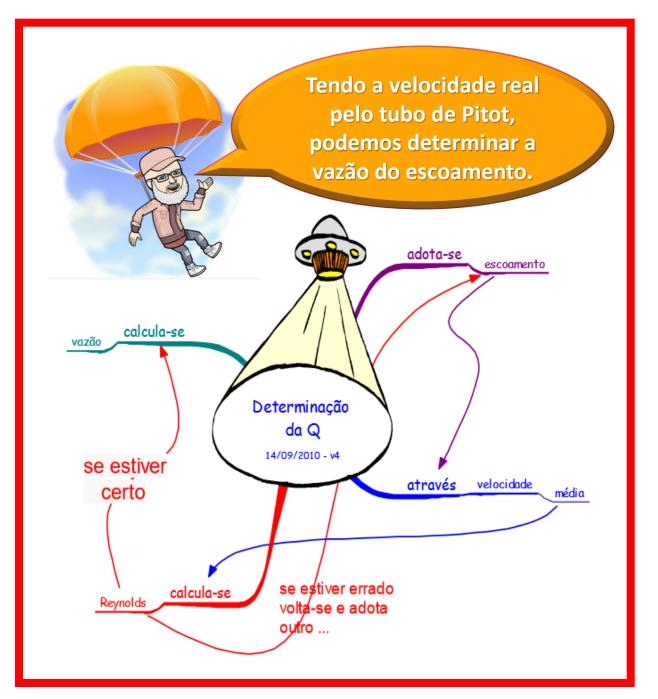
$$\frac{\mathbf{p_0}}{\gamma} = \frac{\mathbf{p_1}}{\gamma} + \frac{\mathbf{v_1^2}}{2\mathbf{g}} \Rightarrow \frac{\mathbf{v_1^2}}{2\mathbf{g}} = \frac{\mathbf{p_0} - \mathbf{p_1}}{\gamma}$$






#### Portanto:


$$\mathbf{v_1} = \mathbf{v_{real}} = \sqrt{2\mathbf{g} \times \frac{\mathbf{p_0} - \mathbf{p_1}}{\gamma}}$$





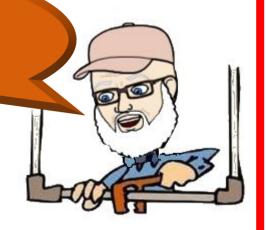
Importante observar que p<sub>0</sub> – p<sub>1</sub> representa a pressão dinâmica e que para a situação da figura, aplicando a equação manométrica temos a equação:

$$\mathbf{p_0} - \mathbf{p_1} = \mathbf{h} \times (\gamma_{m} - \gamma)$$










Adotamos, por exemplo, o escoamento turbulento, onde sabemos que:

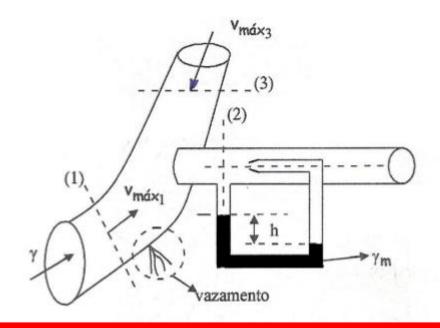
$$\mathbf{v}_{\text{real}} = \mathbf{v}_{\text{máx}} \times \left[1 - \frac{\mathbf{r}}{\mathbf{R}}\right]^{\frac{1}{7}}$$

Tendo a velocidade real, calculamos a velocidade máxima e com ela a velocidade média:

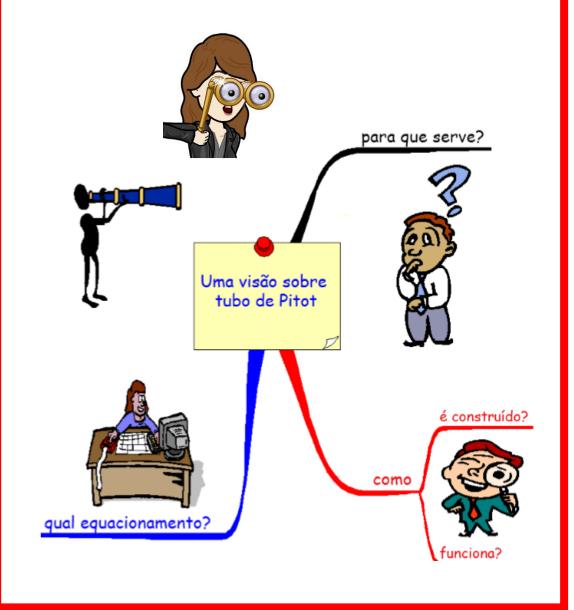
$$\mathbf{v} = \mathbf{v}_{\text{m\'edia}} = \frac{49}{60} \times \mathbf{v}_{\text{m\'ax}}$$

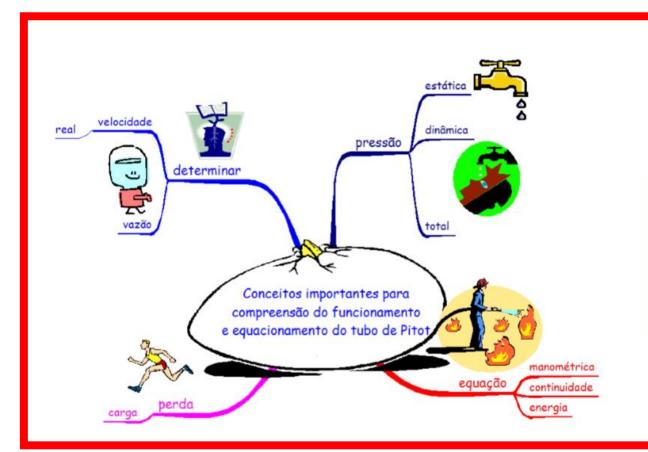


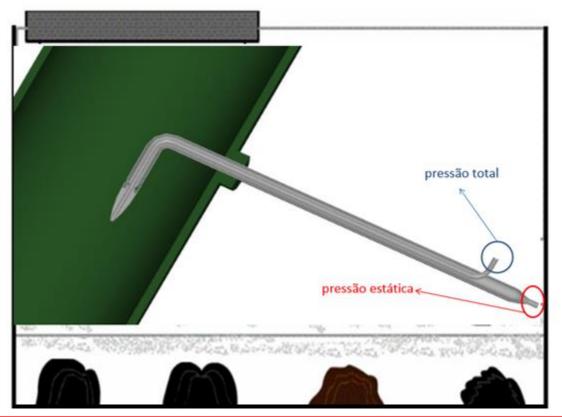



Tendo a velocidade média, determinamos a vazão do escoamento:

$$\mathbf{Q} = \mathbf{v}_{\text{m\'edia}} \times \mathbf{A}$$





Exercício 103: O engenheiro de manutenção constatou um vazamento em um trecho de uma dada instalação, como é esquematizado a seguir. Sabendo que o escoamento na seção (1) é laminar e em (2) e (3) turbulento, pede-se determinar a vazão do vazamento.


**Dados:** nas seções (1), (2) e (3) o conduto é forçado de seção circular, onde se tem  $D_1$  = 38,1 mm;  $D_2$  = 15,6 mm;  $D_3$  = 26,6 mm;  $V_{m\acute{a}x1}$ = 1 m/s;  $V_{m\acute{a}x3}$ = 2 m/s; h = 3,7 cm;  $V_{m\acute{a}x3}$ = 10<sup>-5</sup> m²/s;  $V_{m\acute{a}x3}$ = 136000 N/m³;  $V_{m\acute{a}x3}$ = 9,8 m/s²



### 4.7. Simulação da experiência do tubo de Pitot









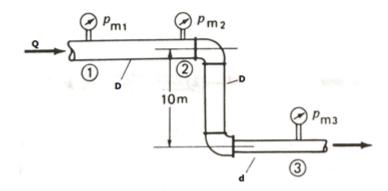




4.8. Equação da energia para um escoamento incompressível, em regime permanente e em trecho sem máquina hidráulica

$$H_{inicial} = H_{final} + Hp_{i-f}$$

$$\mathbf{Z}_{inicial} + \frac{\mathbf{p}_{inicial}}{\gamma} + \frac{\mathbf{v}_{inicial}^2}{\gamma} = \mathbf{Z}_{final} + \frac{\mathbf{p}_{final}}{\gamma} + \frac{\mathbf{v}_{final}^2}{\gamma} + \mathbf{H}\mathbf{p}_{i-f}$$




**Exercício 109:** Considerando o trecho da instalação representado abaixo, pede-se comparar a carga total em (1) com a carga total em (2).



Exercício 111: Água escoa através de um tubo com uma vazão de 4 L/s. Se as pressões manométricas p<sub>m1</sub>, p<sub>m2</sub> e p<sub>m3</sub> são respectivamente 13,8 kPa, 12,3kPa e 10,8 kPa, calcule a perda de carga nos trechos de (1) a (2); de (2) a (3) e de (1) a (3).

**Dados:**  $\rho_{\text{água}} = 1000 \text{ kg/m}^3$ ; g = 9,8 m/s²; e os diâmetros internos das tubulações D = 52,5 mm e d = 26,6 mm.



Veja a solução: https://www.youtube.com/watch?v=1dLdabblnX4

4.10. Equação da energia para um escoamento incompressível, em regime permanente e em presença de máquina hidráulica.

### 4.10.1. Conceito de máquina hidráulica

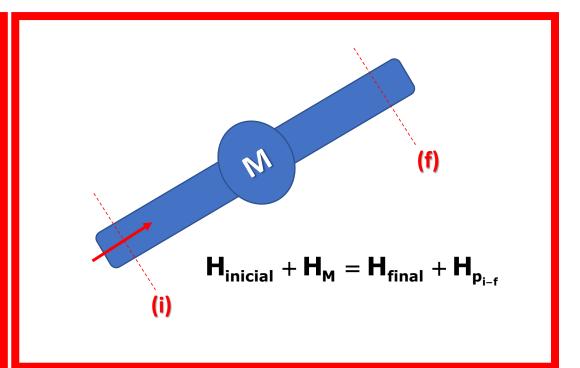
Máquina hidráulica é o dispositivo que introduzido no escoamento fluido fornece, ou retira, energia na forma de trabalho. A energia fornecida, ou retirada, por unidade de peso é denominada de carga manométrica da máquina.

TURBINA +

GERADOR

TURBINA HIDRÁULICA DE IMPULSÃO

Bomba hidráulica é o dispositivo que fornece carga ao fluido, esta carga fornecida é denominada de carga manométrica da bomba e representada por H<sub>B</sub>.



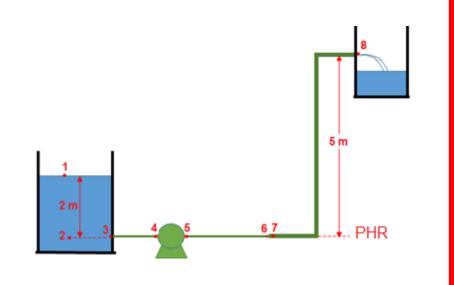

Turbina hidráulica é o dispositivo que retira carga do fluido, esta carga é denominada de carga manométrica da turbina e representada por H<sub>⊤</sub>.

## 4.10.2. Equação da energia em presença de máquina hidráulica

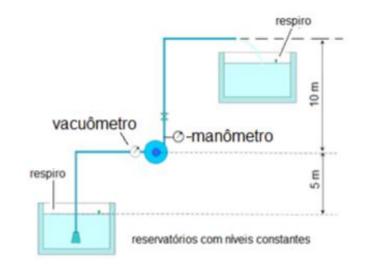


Considere o trecho de uma instalação representado pela figura , onde ocorre o escoamento incompressível e em regime permanente.




$$z_{i} + \frac{p_{i}}{\gamma} + \frac{v_{i}^{2}}{2g} + H_{M} = z_{f} + \frac{p_{f}}{\gamma} + \frac{v_{f}^{2}}{2g} + Hp_{i-f}$$

### Observações:


- Se  $H_M > 0$  é bomba e  $H_M = + H_B$ ; se  $H_M < 0$  é turbina e  $H_M = H_T$ .
- Só podemos escreve as equações anteriores se o sentido do escoamento for conhecido, caso não seja, consideramos um trecho sem máquina e calculamos a carga total (H) em duas seções e sempre em um trecho sem máquina, o fluido escoa da maior carga para a menor carga.
- O único trecho que não consideramos as perdas na equação da energia é entre a entrada e a saída de uma máquina, isto porque as perdas já são consideradas no rendimento da máquina.

**Exercício 115:** Na instalação a seguir esquematizada deverão circular 15 m³/h de água ( $\rho$  = 1000 kg/m³ e  $\mu$  = 10<sup>-3</sup> Pa x s). Verificar o tipo de máquina e calcular sua carga manométrica.

São dados:  $Hp_{3-4} = 3,1$  m;  $Hp_{5-6} = 4,1$  m;  $Hp_{6-7} = 1,8$  m;  $Hp_{7-8} = 10,2$  m; aceleração da gravidade 9,8 m/s²; área da seção transversal dos tubos: até 6: A = 0,001314 m² ( $D_{int} = 40,8$  mm); de 7 a 8: A = 0,002165 m² ( $D_{int} = 52,5$  mm).



**Exercício 120:** A instalação de bombeamento representada a seguir transporta água (ρ = 995 kg/m³) com uma vazão de 5 L/s. Sabendo que a instalação tem um único diâmetro igual a 63 mm, que a aceleração da gravidade é 9,8 m/s², que a pressão na entrada da bomba, registrada por um vacuômetro é – 55870 Pa e que a pressão na saída da bomba, registrada pelo manômetro, é 101870 Pa, pedese a carga manométrica da bomba; a perda de carga antes da bomba e a perda de carga depois da bomba.

