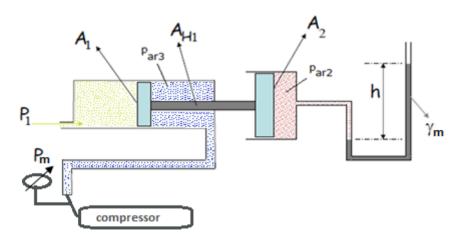
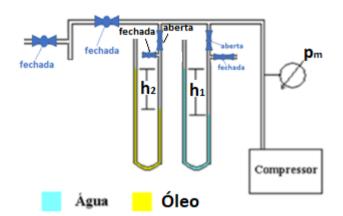

Segunda avaliação diversificada referente a ESTÁTICA DOS FLUIDOS (capítulo 2)


Primeira prova diversifica de FT - parte 2 - Turma A1

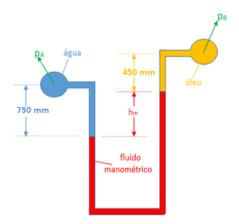
 1^a Questão: O esquema a seguir representa o trecho de uma bancada de laboratório. Sabendo que para uma dada vazão a pressão manométrica é 75% da pressão da seção (0) (p_0), que é igual a 245 KPa, pede-se calcular o desnível h_2 em mm para esta situação.

Dados: $h_m = 200$ mm; $h_1 = 180$ mm; $\rho_{\text{água}} = 998,2$ kg/m³; $\rho_{\text{Hg}} = 13564$ kg/m³ $e g = 9,8 \text{ m/s}^2$.

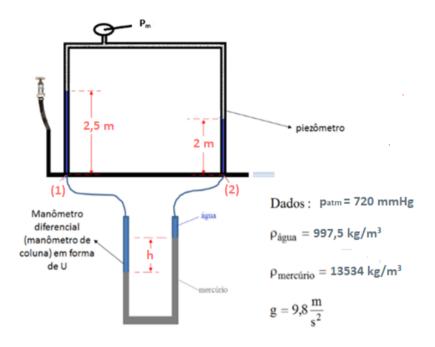


2ª Questão: Sabendo que o sistema a seguir está em repouso, pede-se especificar a pressão manométrica em mca. São dados: $p_1 = 50$ kPa; $A_1 = 5$ cm²; $A_{H1} = 3$ cm²; $A_2 = 90$ cm²; $\gamma_m = 20000$ N/m³; $\gamma_{agua} = 10000$ N/m³ e h = 100 mm.

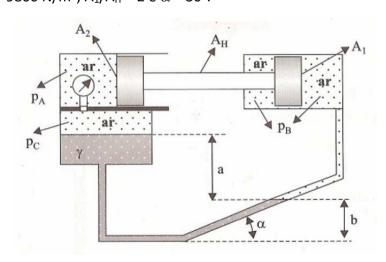
Primeira prova diversifica de FT - parte 2 - Turma B1


- 1ª Questão: Um compressor gera uma pressão que pode ser lida no manômetro metálico tipo Bourdon 1. Quando o mesmo registra uma pressão p₁ em mmca, temos a mesma agindo em dois manômetros de coluna de fluido em forma de U, um com a água com corante como fluido manométrico e o outro com o óleo onde, temos os desníveis h₁ e h₂, respectivamente. Pede-se:
 - a) a pressão manométrica em mmca;
 - b) o desnível h₂ em mm do óleo.

Dados:

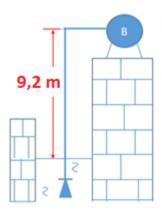

995,8
250
860
9,8

- 2ª Questão: Sabendo que o sistema a seguir encontra-se em repouso, que o desnível h_m do fluido manométrico é igual a 400 mm, pede-se determinar o peso específico e a massa específica do fluido manométrico no SI. Sabe-se que a pressão absoluta no ponto A é 140840 N/m² e que a pressão no ponto B é igual a 23640 Pa.
 - Dados: g = 9,8 m/s²; pressão atmosférica local igual a 95200Pa; peso específico da água igual a 9800 N/m³ e peso específico do óleo igual a 8036 N/m³.

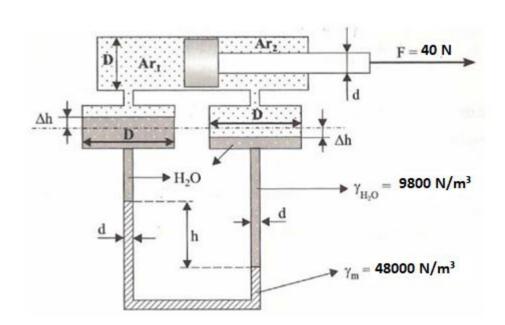


Primeira prova diversifica de FT - parte 2 - Turma C1

1ª Questão: Para diminuir as cargas de pressão lidas pelos piezômetros da figura optouse em injetar um ar comprimido sobre os mesmos. Sabendo que a pressão na seção (1) é 20 mca, pede-se determinar a pressão do ar na escala absoluta no SI, a pressão lida pelo manômetro metálico em Pa, bem como o desnível h do mercúrio em mm.



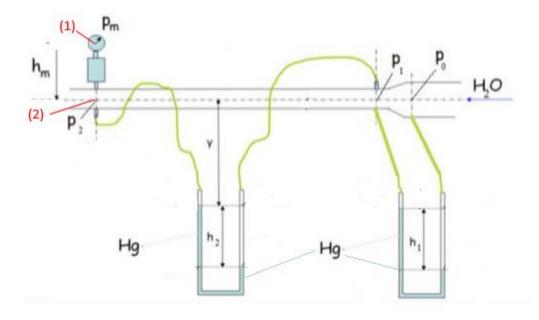
2ª Questão: No dispositivo da figura, a leitura do manômetro é 35 kPa e a relação de áreas dos pistões é A_2/A_1 igual a 2. A pressão atmosférica no local é 720 mmHg. Estando o sistema em equilíbrio, pede-se a pressão p_A na escala absoluta no SI. Dados: $\gamma = 25000 \text{N/m}^2$; a = 100 cm; $\gamma_{Hg} = 136000 \text{ N/m}^3$; $\gamma_{água} = 9800 \text{ N/m}^3$; $A_1/A_H = 2 \text{ e } \alpha = 30^\circ$.


Primeira prova diversifica de FT - parte 2 - Turma D1

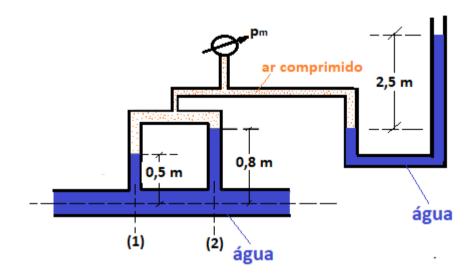
 1^a Questão: O trecho da instalação de recalque representado abaixo, tem uma bomba centrífuga de 5CV e se encontra em local onde a leitura barométrica é igual a 745 mmHg, neste caso, ela irá funcionar? Justifique através do diagrama comparativo de escala de pressão e considere o escoamento do fluido ideal. Dado: $\gamma_{Hg} = 136000 \text{N/m}^3$ e $\gamma_{\text{água}} = 9800 \text{ N/m}^3$.

- 2ª Questão: Na figura a seguir o sistema está em equilíbrio estático. Pede-se:
 - a) p_{ar1} no SI
 - b) p_{ar2} absoluta no SI.

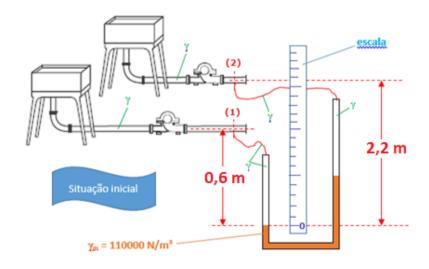
Dados: D = 71,4 mm; d = 35,7 mm; Δh = 60 mm; p_{atm} = 700 mmHg; γ_{Hg} =136000 N/m³; para F = 0 $\rightarrow h$ = 0


Primeira prova diversifica de FT - parte 2 - Turma A2

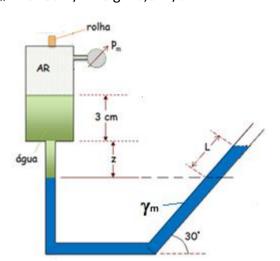
1ª Questão: Para o sistema abaixo permanecer em equilíbrio é colocado um peso G igual a 450N. Sendo dados $A_3 = 15 \text{ cm}^2$; $A_2 = 25 \text{ cm}^2$; $A_1 = 20 \text{ cm}^2 \text{ e h} = 3 \text{ m}$, especifique o peso específico do fluido manométrico (γ_m).


2ª Questão: O esquema a seguir representa o trecho de uma bancada de laboratório. Sabendo que para uma dada vazão a pressão manométrica é 330 kPa, e que a pressão da seção (0) (p₀) é igual a 35,8 mca, pede-se calcular o desnível h₁ em mm para esta situação.

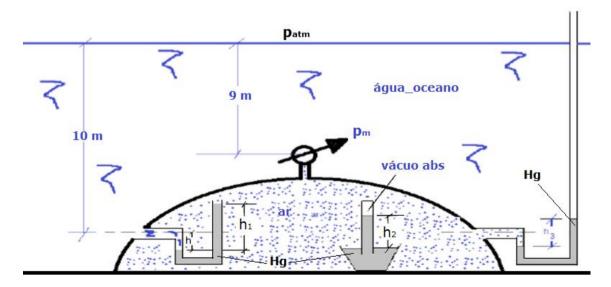
Dados: h_m = 280 mm; h_2 = 200 mm; $\rho_{\text{água}}$ = 997,5 kg/m³; ρ_{Hg} = 13546kg/m³ e g = 9,8 m/s².


Primeira prova diversifica de FT - parte 2 - Turma B2

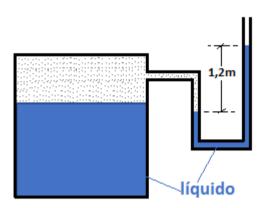
1ª Questão: O dispositivo mostrado na figura abaixo mede o diferencial de pressão entre duas seções de uma tubulação por onde escoa água. Com base nos dados apresentados na figura, pede-se determinar o diferencial de pressão entre as seções consideradas em Pa e mca, além disto, especifique a pressão absoluta do ar e a pressão manométrica (pm). Dados: pressão atmosférica local 700 mmHg, massa específica d'água igual a 1000 kg/m³, peso específico do mercúrio igual a 136000N/m³ e aceleração da gravidade igual a 9,8 m/s².


2ª Questão: Um manômetro diferencial é instalado entre dois condutos por onde escoa o mesmo fluido, de massa específica 850 kg/m³, como mostra a figura. A pressão no tubo (2) é constante e igual a 130kPa. Quando a p₁ = 2200 mmHg, o nível do fluido manométrico na coluna esquerda coincide com o zero da escala. Determinar a altura do fluido manométrico, na coluna da direita, em relação ao zero da escala.

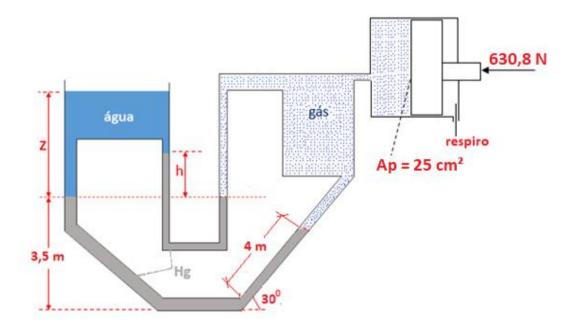
Dados: $\gamma_{Hg} = 136000 \text{ N/m}^3 \text{ e g} = 9.8 \text{ m/s}^2$


Primeira prova diversifica de FT - parte 2 - Turma C2

1ª Questão: Na figura a pressão absoluta do ar é de 120 kPa. Nesta condição a leitura L é de 80 cm, a leitura no manômetro metálico é de 0,8 mca. Sendo o peso específico da água de 9800 N/m³, a massa específica do mercúrio de 13600 kg/m³. Pede-se a leitura barométrica local em mmHg e a cota z. Dados: $\gamma_m = 15480 \text{ N/m}^3 \text{ e g} = 9,8 \text{ m/s}^2$.


2ª Questão: Uma cúpula de aço cheia de ar está imersa no oceano. No interior da cúpula, que se encontra totalmente isolada, tem-se um barômetro que registra $h_2 = 780$ mmHg. Instalou-se na cúpula dois manômetros diferenciais em forma de U, sendo um interno que registra um desnível $h_1 = 710$ mmHg e outro externo que registra um desnível h_3 mmHg. Pede-se determinar: a pressão atmosférica local; a pressão manométrica e o desnível h_3 .

Dados: h = 250 mm; γ_{Hg} = 132712 N/m³ e $\gamma_{água_oceano}$ = 9900 N/m³.


Primeira prova diversifica de FT - parte 2 - Turma D2

1ª Questão: Um reservatório cúbico de 55025,6 litros que é submetido a pressão de um ar comprimido (vide figura abaixo) tem 3/5 de sua capacidade preenchida por um líquido de massa específica relativa igual a 0,86, pede-se determinar a pressão que atua em seu fundo nas escalas efetiva e absoluta.
Dados: leitura barométrica igual a 695 mmHg e a peso específico do mercúrio igual a 136000 N/m³.

2ª Questão: Na figura mostrada a seguir o pistão encontra-se em equilíbrio e nesta condição, pede-se determinar: a cota z em mm e a cota h em mm.

Dados: $\gamma_{\text{água}} = 9800 \text{ N/m}^3 \text{ e } \gamma_{\text{Hg}} = 136000 \text{ N/m}^3$.

