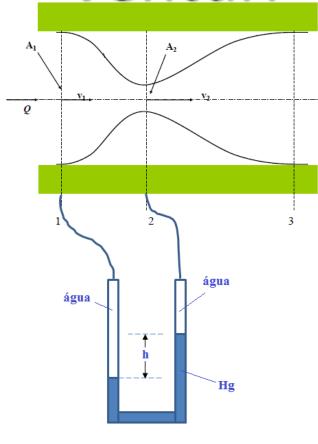


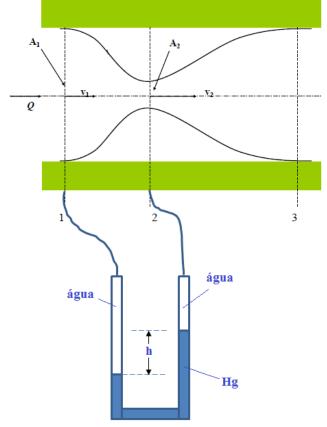
Pitot

Estudo do Pitot e do Venturi

Venturi



Venturi



$$Q_{\text{teórica}} = \frac{\pi \times D_{G}^{2}}{4} \times \sqrt{\frac{2 \times g \times h \times \left(\frac{\gamma_{m} - \gamma}{\gamma}\right)}{1 - \left(\frac{D_{G}}{D_{1}}\right)^{4}}}$$

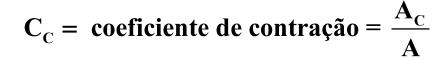
G = 2 garganta do venturi, onde, por exemplo, $D_G = D_2 = 25 \text{ mm}$

1 = seção de aproximação do venturi, onde, por exemplo, D_1 = 40,8 mm

 $Q_{teórica}$ = vazão teórica já que o fluido foi considerado ideal (μ = 0)

Problema= você não usa um aparelho para medir algo teórico, portanto, como obter a vazão real?

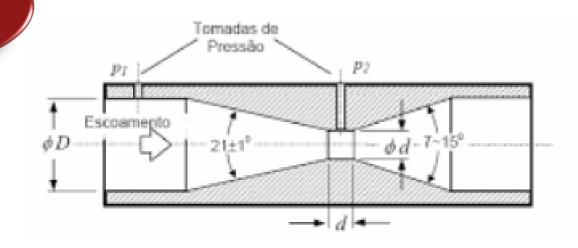
Para obter a vazão real, necessitamos conhecer alguns coeficientes.



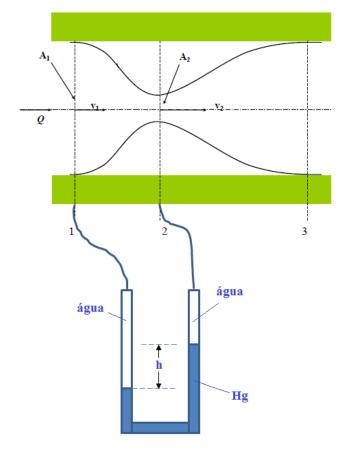
$$C_v = coeficiente de velocidade = \frac{V_{real}}{V_{teórica}}$$

$$C_d = coeficiente de vazão = \frac{Q_{real}}{Q_{teórica}} = C_C \times C_v$$

No venturi normalizado C_c = 1



Portanto para Venturi



$$Q_{real} = C_d \times \frac{\pi \times D_G^2}{4} \times \sqrt{\frac{2 \times g \times h \times \left(\frac{\gamma_m - \gamma}{\gamma}\right)}{1 - \left(\frac{D_G}{D_1}\right)^4}}$$

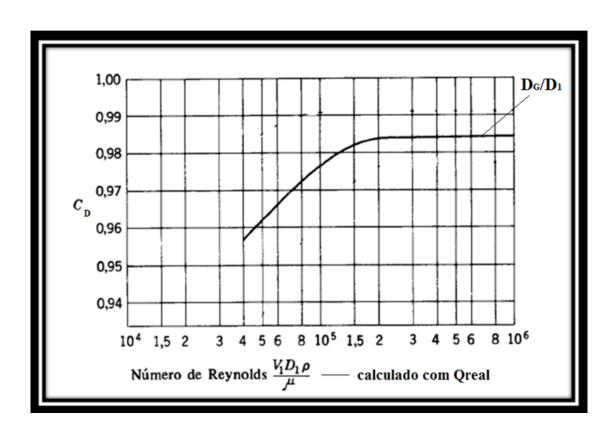
G = garganta do venturi, onde, por exemplo, $D_G = 25 \text{ mm}$

1 = seção de aproximação do venturi, onde, por exemplo, D_1 = 40,8 mm

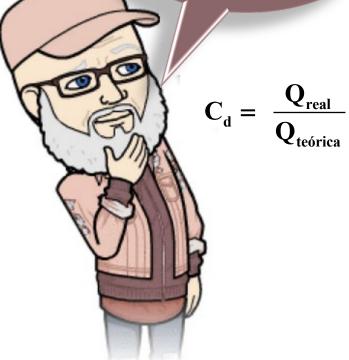
$$C_d = C_v$$

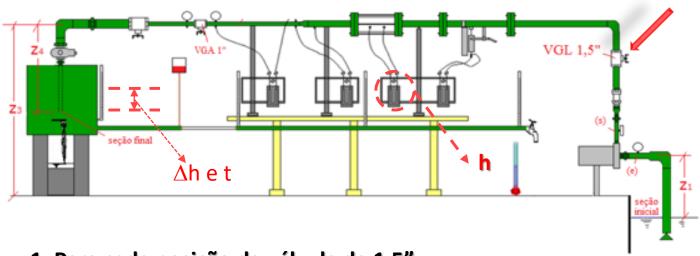
Para resolver o problema proposto há a necessidade de se determinar C_d ou C_v

Uma das possibilidade é ter a curva característica



Surge novos problemas: como obtê-la e como usá-la?

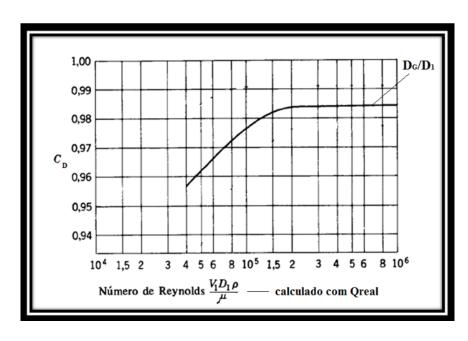




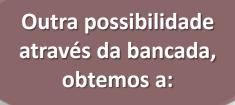
- 1. Para cada posição da válvula de 1,5"
- 2. Lemos h no medidor
- 3. Para um Δh cronometramos o tempo t

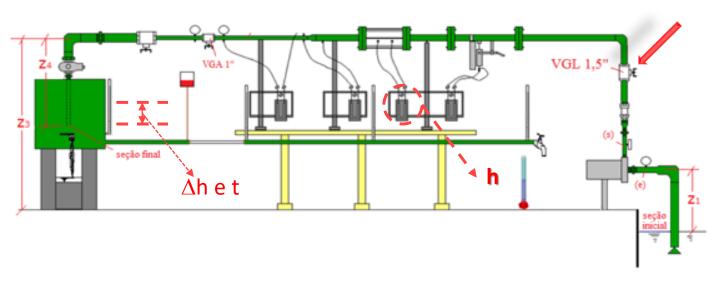
$$Q_{\text{teórica}} = \frac{\pi \times D_G^2}{4} \times \sqrt{\frac{2 \times g \times h \times \left(\frac{\gamma_m - \gamma}{\gamma}\right)}{1 - \left(\frac{D_G}{D_1}\right)^4}}$$

$$Q_{real} = \frac{\Delta h \times A_{tanque}}{t}$$

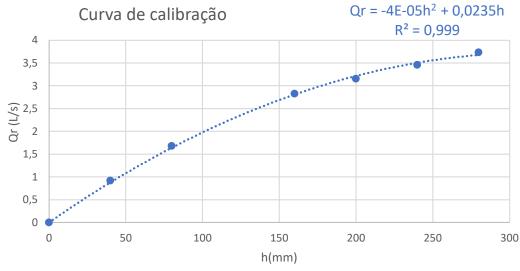


- 1. Adotamos R_{e1} no patamar e lemos C_d
- 2. Como temos Q_{teórica} e agora C_d, achamos Q_{real}
- 3. Com Qreal, determinamos v₁ e calculamos R_{e1}
- 4. Se o $R_{\rm e1}$ der no patamar acabou, caso não repetimos o procedimento com esse Reynolds até coincidir o adotado com o calculado.

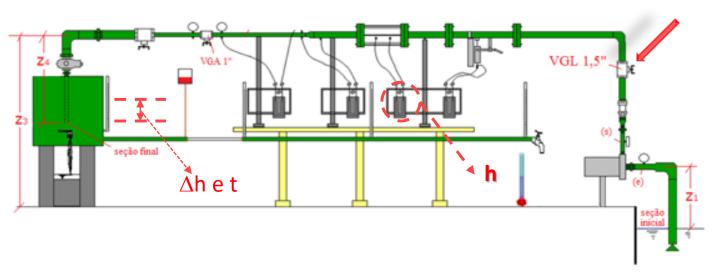




Importante: a curva da calibração é uma curva particular.



Resumindo, no laboratório coletamos os dados.



Ensaio	h (mm)	∆h (mm)	t(s)	Conhecemos
1				temperatura da água e os
2				lados do
3				reservatório
4				que permite calcular a áre
5				da seção
6				transversal d
7				mesmo.

$$Q_{real} = \frac{\Delta h \times A_{tanque}}{t}$$

$$1m^3 = 1000L$$

Ens	aio	h (mm)	Q _R (m³/s)	Q _R (L/s)	v ₁ (m/s)	R _{e1}	Q _t (m³/s)	C _d
1	-							
2	2							
3	3							
4	ļ.							
5	,							
6	5							
7	7							

$$v_1 = \frac{Q_R}{A_1} \to \text{exemplo: } v_1 = \frac{Q_R}{13,1 \times 10^{-4}}$$

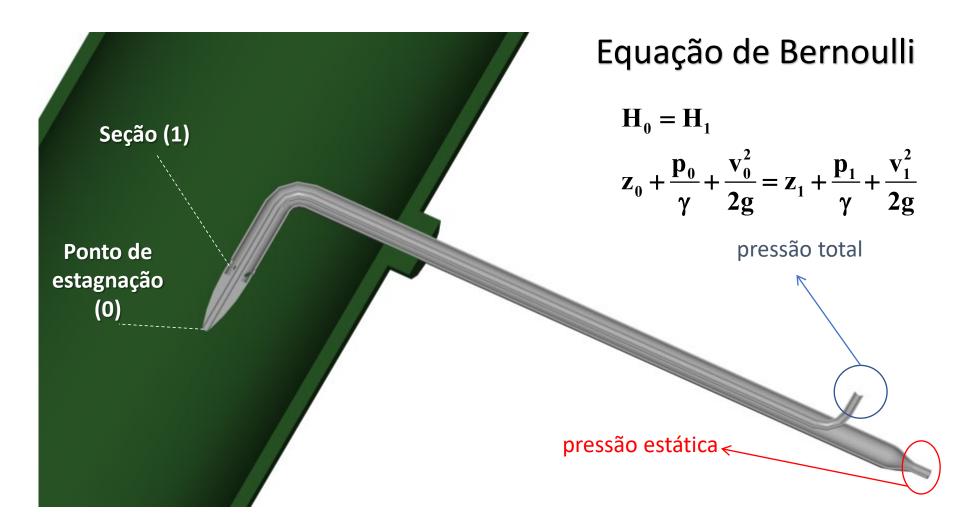
$$\mathbf{R}_{\mathbf{e}_{1}} = \frac{\mathbf{p} \times \mathbf{v}_{1} \times \mathbf{D}_{1}}{\mathbf{\mu}} = \frac{\mathbf{v}_{1} \times \mathbf{D}_{1}}{\mathbf{v}}$$

$$\mathbf{R}_{e_1} = \frac{\rho \times \mathbf{v}_1 \times \mathbf{D}_1}{\mu} = \frac{\mathbf{v}_1 \times \mathbf{D}_1}{\nu}$$

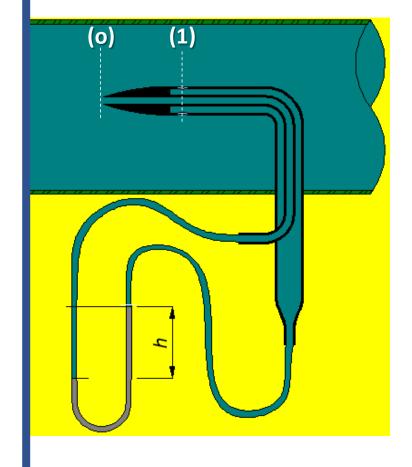
$$\mathbf{Q}_{teórica} = \frac{\pi \times \mathbf{D}_G^2}{4} \times \sqrt{\frac{2 \times \mathbf{g} \times \mathbf{h} \times \left(\frac{\gamma_m - \gamma}{\gamma}\right)}{1 - \left(\frac{\mathbf{D}_G}{\mathbf{D}_1}\right)^4}}$$

$$C_d = \frac{Q_{real}}{Q_{teórica}}$$

Sempre instalado contrário ao sentido do escoamento



Como
$$Z_0 = Z_1$$
 e $v_0 = 0$ e ainda $p_0 - p_1 = p_d$ tem – se: $v_1 = \sqrt{2g \times \frac{p_d}{\gamma}}$



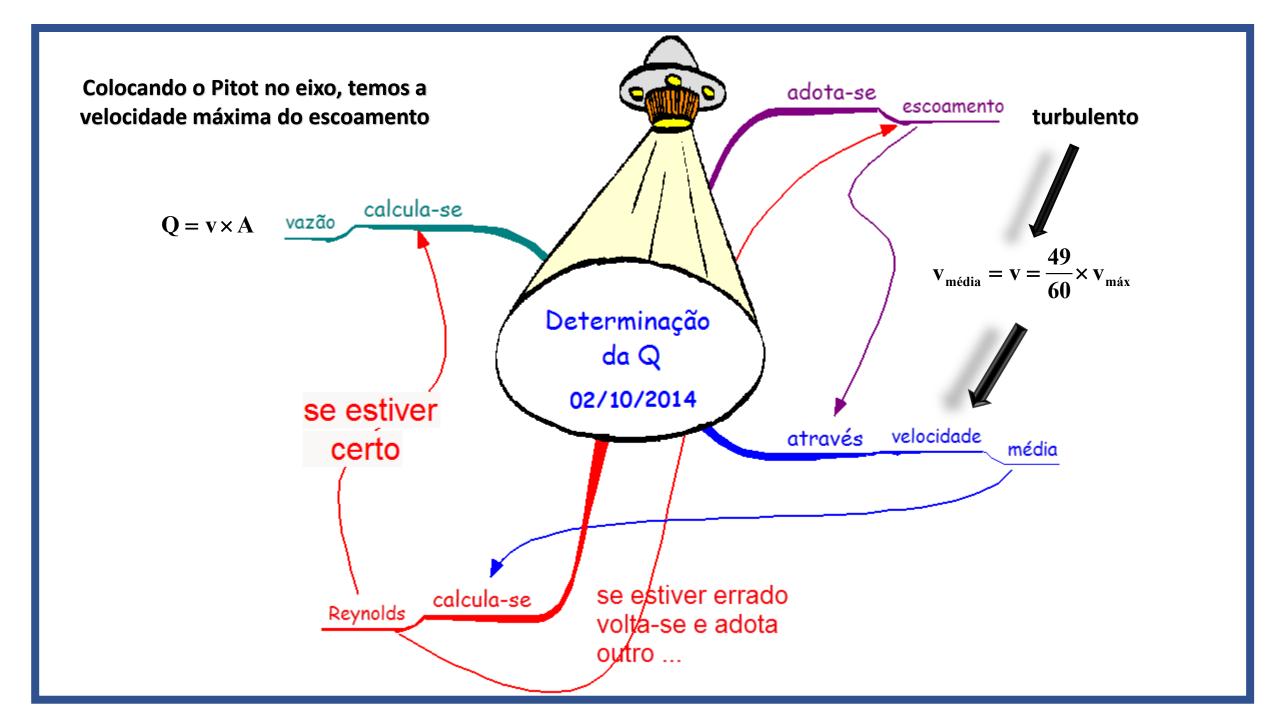
Como
$$Z_0 = Z_1$$
 e $v_0 = 0$ e ainda $p_0 - p_1 = p_d$ tem – se: $v_1 = \sqrt{2g \times \frac{p_d}{\gamma}}$

Pela equação manométrica se tem:

$$\mathbf{p}_0 - \mathbf{p}_1 = \mathbf{h} \times (\gamma_m - \gamma)$$

Portanto:
$$v_{ponto} = v_{real} = \sqrt{2g \times h \times \left(\frac{\gamma_m - \gamma}{\gamma}\right)}$$

Dá para determinar a vazão pelo Pitot?



Se o Pitot não estiver no eixo da tubulação

Adota-se o escoamento, por exemplo o turbulento, onde se sabe que:

$$v_{real} = v_{m\acute{a}x} \times \left(1 - \frac{r}{R}\right)^{1/7}$$

Tendo-se a velocidade real calcula-se a velocidade máxima e média:

$$v_{\text{média}} = \frac{49}{60} \times v_{\text{máx}}$$

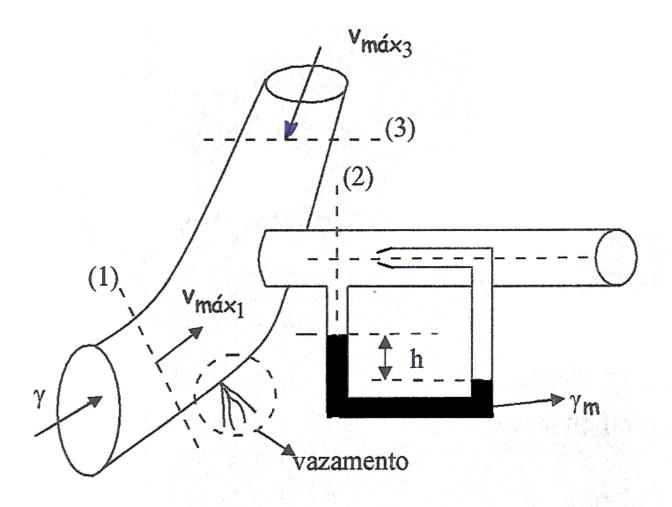
Com a velocidade média verifica-se o Reynolds.

Dando turbulento, calcula-se a vazão

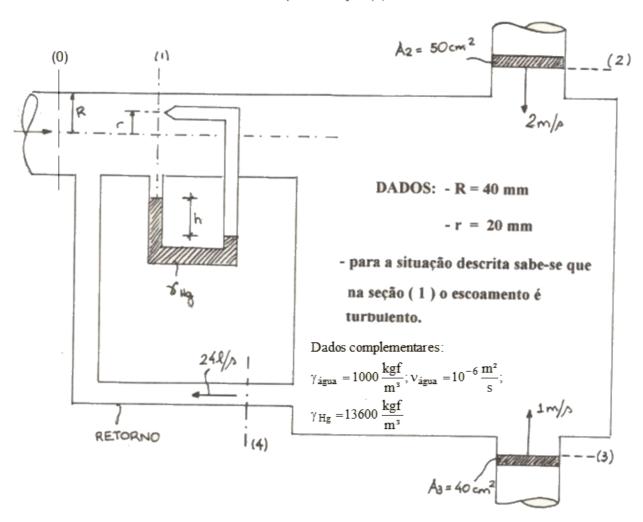
1. O engenheiro de manutenção constatou um vazamento em um trecho de uma dada instalação, como é esquematizado a seguir. Sabendo que o escoamento na seção (1) é laminar e que tem em (2) e (3) turbulento, pede-se determinar a vazão do vazamento.

Dados: nas seções (1), (2) e (3) se considera conduto forçado de seção circular, onde se tem D_1 = 38,1 mm; D_2 = 15,6 mm; D_3 = 26,6 mm; $V_{m\acute{a}x1}$ = 1 m/s; $V_{m\acute{a}x3}$ = 2 m/s; $V_{m\acute{a}x3}$ = 2 m/s; $V_{m\acute{a}x3}$ = 2 m/s; $V_{m\acute{a}x3}$ = 136000 N/m³; $V_{m\acute{a}x3}$ = 136000 N/m³; $V_{m\acute{a}x3}$ = 136000 N/m³;

Solução no YouTube: https://youtu.be/BvzMGkWs5Ws



2 Considerando o esquema abaixo pede-se determinar o desnível do fluido manométrico utilizado no manômetro diferencial acoplado ao tubo de Pitot e verificar se o sentido indicado para a seção (0) está correto.



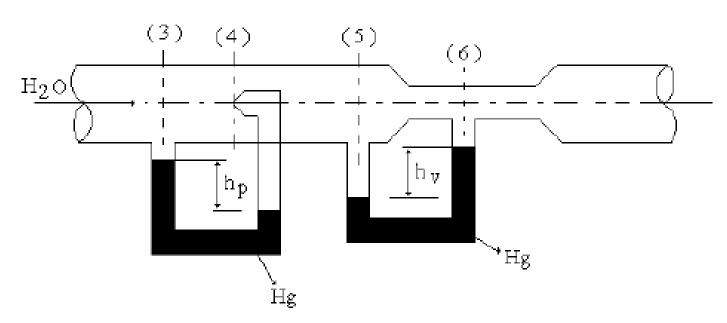
No trecho da instalação representado a seguir a água escoa em regime turbulento e o coeficiente de vazão do Venturi é igual a 0,97. Nesta situação, pede-se:

- a) a vazão real do escoamento;
- b) os desníveis h_p e h_v

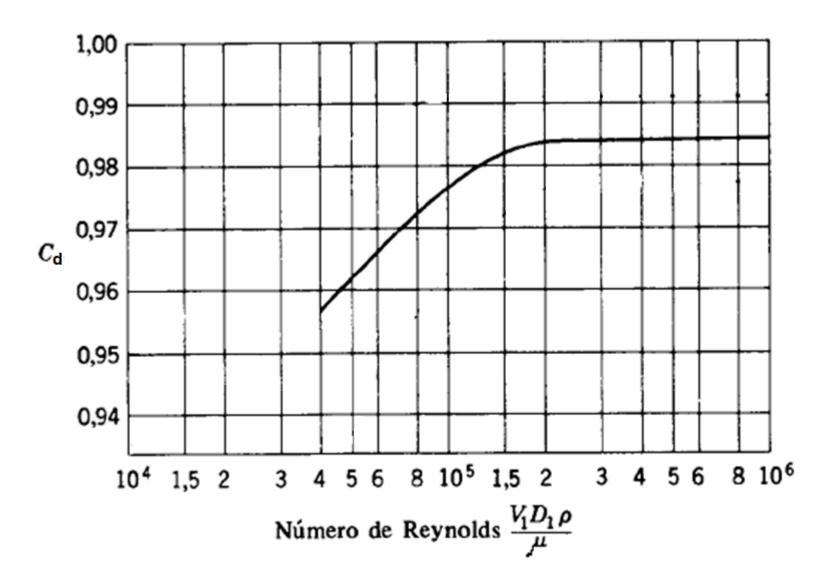
Solução no YouTube:

https://youtu.be/5_SJBRZiZRo

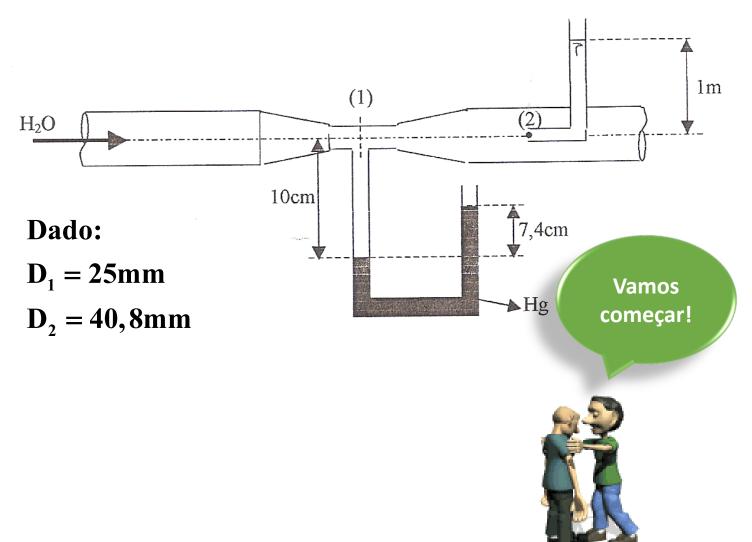
Dados: $D_6 = 20.8 \text{ mm}$; $D_3 = D_4 = D_5 = 25 \text{ mm}$; $\gamma_{H2O} = 10^3 \text{ kgf} / \text{ m}^3$; $\nu_{H2O} = 10^{-6} \text{ m}^2 / \text{s}$ e $\gamma_{Hg} = 13600 \text{ kgf} / \text{ m}^3$



Dado:



No esquema da figura o escoamento é em regime permanente, unidimensional de um fluido ideal. Determinar a velocidade na garganta do venturi. Dados: γ_{H2O} = 1000kgf/m³; γ_{Hg} = 13600kgf/m³.



Sabendo que o Venturi a seguir tem um coeficiente de vazão igual a 0,98, pede-se determinar a vazão real do escoamento, são dados: A_1 = 10 cm²; A_2 = 5 cm²; γ_{agua} = 1000 kgf/m³ e γ_{Hg} = 13600 kgf/m³

