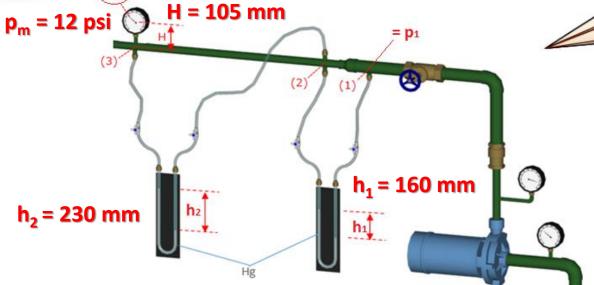


Leituras em manômetros metálicos

 $p = p_m + \gamma h$

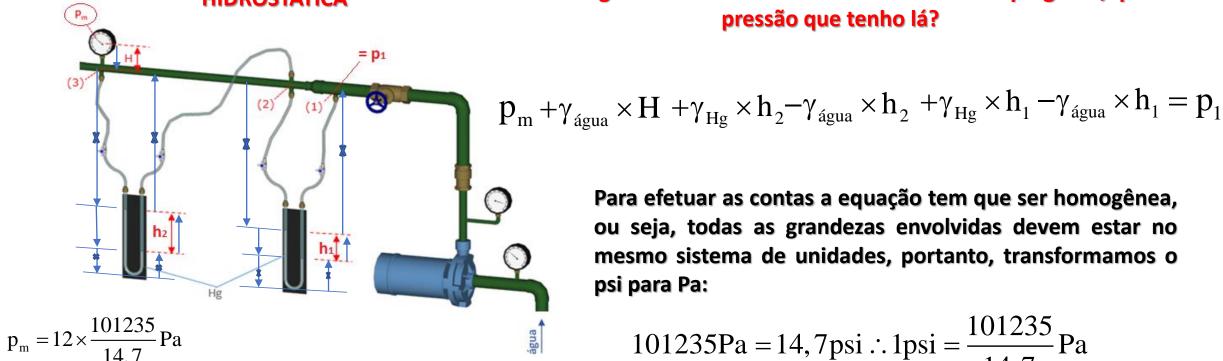

Tipo Bourdon – lemos a p_m

Dado p_m , H, h_2 , h_1 , $\gamma_{\text{água}}$ e γ_{Hg} , calcule p_1 (pela hidrostática)

Esta foi a primeira atividade supervisionada!

101235Pa = 14,7psi

Temperatura da água 24°C, portanto com ela determinamos a massa específica d'água e do mercúrio.


$$\rho_{\text{água}} = 997, 3 \frac{\text{kg}}{\text{m}^3}$$

$$\rho_{\text{Hg}} = 13536 \frac{\text{kg}}{\text{m}^3}$$

http://www.escoladavida.eng.br/hidraulica_I/consultas.htm

HIDROSTÁTICA

Adoto a origem no centro do manômetro metálico e pergunto, qual a pressão que tenho lá?

$$101235$$
Pa = 14,7psi : 1psi = $\frac{101235}{14,7}$ Pa

$$H = 0.105 m$$

$$h_2 = 0,23m$$

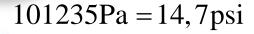
$$82640, 82 + 9773, 54 \times 0, 105 + 132652, 8 \times 0, 23 - 9773, 54 \times 0, 23 + 132652, 8 \times 0, 16 - 9773, 54 \times 0, 16 = p_1$$

$$h_1 = 0.16m$$

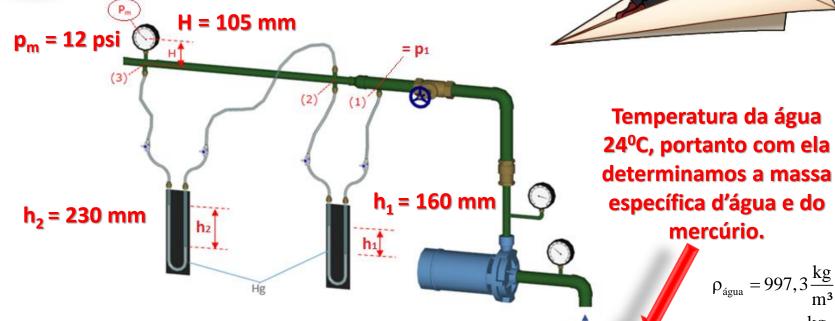
$$\gamma_{\text{água}} = 9,8 \times 997, 3 \frac{N}{m^3}$$

$$\gamma_{\rm Hg} = 9.8 \times 13536 \frac{N}{m^3}$$

$$p_1 = 131589,9531Pa \cong 131590Pa$$

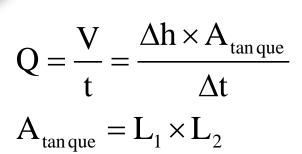

Dado p_m , H, h_2 , h_1 , $\gamma_{\text{água}}$ e γ_{Hg} , calcule p_1 (pela hidrodinâmica)

Nosso problema de hoje e para resolvêlo, temos que saber a vazão!


mercúrio.

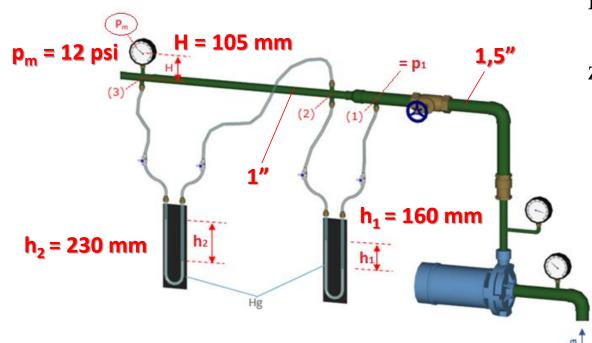
 $\rho_{\text{água}} = 997, 3 \frac{\text{kg}}{\text{m}^3}$

 $\rho_{\rm Hg} = 13536 \frac{\rm kg}{\rm m^3}$



http://www.escoladavida.eng.br/hidraulica_I/consultas.htm

Cronometro o tempo para o Δh e obtenho Δt



 $\Delta h = 100 \text{ mm e } \Delta t = 19,69 \text{ s}$

Equação da energia de (1) a (3):

$$H_1 = H_3 + H_{p_{1-3}}$$

$$z_{1} + \frac{p_{1}}{\gamma} + \frac{\alpha_{1} \times v_{1}^{2}}{2g} = z_{3} + \frac{p_{3}}{\gamma} + \frac{\alpha_{3} \times v_{3}^{2}}{2g} + H_{p_{1-2}} + H_{p_{2-3}}$$

Adotando o PHR no eixo do tubo, temos que: $z_1 = z_3$

Por outro lado, sabemos que:


$$p_3 = \frac{12 \times 101235}{14,7} + 9773,54 \times 0,105 = 83667,04$$
Pa

Para especificar os coeficientes de Coriolis e as velocidades médias, temos que determinar a vazão de escoamento:

$$Q = \frac{0.1 \times (0.74 \times 0.736)}{19,69} \cong 0.00277 \frac{m^3}{s} = 2.77 \frac{L}{s}$$

Aí, vamos achar as velocidades médias do escoamento, para isso, lembramos que os tubos são de aço 40, respectivamente com diâmetros nominais de 1,5" e 1", consultamos a norma ANSI B3610:

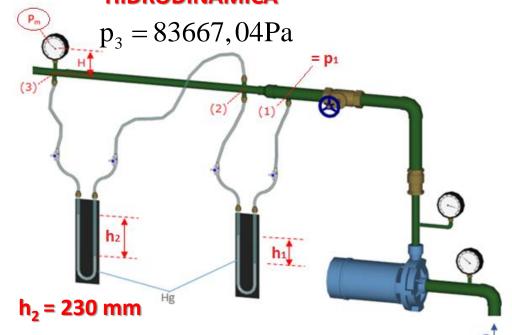
Norma para o aço ANSI B3610

Diâmetro nominal	Designação de	Espessura de parede	Diâmetro interno	Area da seção	Àrea da seção	Superfície externa		roximado g/m)	Moment o de	Momento resistente	Raio de giração
(pol) Diâmetro externo	l) espessura. (mm) (mm) livre (cm²) etro		de metal (cm²)	(m²/m)	Tubo vazio (Nota 5)	Conteúdo de água	inércia (cm ⁴)	(cm³)	(cm)		
(mm)	(v. Nota 2)	(v. Nota 3)									
12.7	10S Std, 40, 40S XS, 80, 80S	1,65 2,23 3,02	10,4 9,2 7,7	0,85 0,67 0,46	0,62 0,81 1,01	0,043	0,49 0,62 0,79	0,085 0,067 0,046	0,116 0,138 0,157	0,169 0,202 0,229	0,430 0,413 0,393
13,7	10S	1,65	13.8	1,50	0.81	0,054	0,63	0.150	0.236	0.285	0,551
1/8	Std, 40, 40S XS, 80, 80S	2,31 3,20	12,5 10,7	1,23 0,91	1,08 1,40	0,034	0,84 1,10	0,123 0,090	0,304 0,359	0,354 0,419	0,531 0,506
17,1											
½ - 21	Std, 40, 40S XS, 80, 80S 160 XXS	2,77 3,73 4,75 7,47	15,8 13,8 11,8 6,4	1,96 1,51 1,10 0,32	1,61 2,06 2,47 3,52	0,071	0,42 1,62 1,94 2,55	0,20 0,15 0,11 0,03	0,71 0,84 0,92 1,01	0,67 0,78 0,86 0,95	0,66 0,64 0,61 0,56
3/4	Std. 40, 40S	2,87	20.9	3.44	2.15	0.083	1.68	0.34	1.54	1.16	0.85
-	XS, 80, 80S 160 XXS	3,91 5,54 7,82	18,8 15,6 11,0	2,79 1,91 0,95	2,80 3,68 4,63	,,,,,	2,19 2,88 3,63	0,28 0,19 0,10	1,86 2,19 2,41	1,40 1,65 1,81	0,82 0,77 0,72
27	0. 10 00	2.22	110		2.20	0.105	2.50		2.41	210	1.07
33	Std., 40, 40S XS, 80, 80S 160 XXS	3,37 4,55 6,35 9,09	26,6 24,3 20,7 15,2	5,57 4,64 3,37 1,82	3,19 4,12 5,39 6,94	0,105	2,50 3,23 4,23 5,44	0,56 0,46 0,34 0,18	2,64 4,40 5,21 5,85	2,18 2,63 3,12 3,50	1,07 1,03 0,98 0,92
11/4	Std, 40, 40S XS, 80, 80S 160 XXS	3,56 4,85 6,35 9,70	35 32,5 29,4 22,7	9,65 8,28 6,82 4,07	4,32 5,68 7,14 9,90	0,132	3,38 4,46 5,60 7,76	0,96 0,83 0,68 0,41	8,11 10,06 11,82 14,19	3,85 4,77 5,61 6,74	1,37 1,33 1,29 1,20
42											
1½	Sto. 40, 40 XS, 80, 80S 160 XXS	3,68 5,08 7,14 10,16	40,8 38,1 33,9 27,9	13,1 11,4 9,07 6,13	5,15 6,89 9,22 12,2	0,151	4,04 5,40 7,23 9,53	1,31 1,14 0,91 0,61	12,90 16,27 20,10 23,64	5,34 6,75 8,33 9,80	1,58 1,54 1,48 1,39
2	Std, 40, 40S XS, 80, 80S 160	3,91 5,54 8,71	52,5 49,2 42,9	21,7 19,0 14,4	6,93 9,53 14,1	0,196	5,44 7,47 11,08	2,17 1,90 1,44	27,72 36,13 48,41	9,20 11,98 16,05	2,00 1,95 1,85
60	XXS	11,07	38,2	11,4	17,1		13,44	1,14	54,61	18,10	1,79
2½	Std, 40, 40S XS, 80, 80S 160	5,16 7,01 9,52	62,7 59,0 54,0	30,9 27,3 22,9	11,0 14,5 19,0	0,235	8,62 11,40 14,89	3,09 2,73 2,29	63,68 80,12 97,94	17,44 21,95 26,83	2,41 2,35 2,27

$v_{\text{água}_{-}24^{0}\text{C}} = 0.913 \times 10^{-6} \frac{\text{m}^{2}}{\text{S}}$

Calculamos as velocidades médias do escoamento:

$$v_1 = \frac{0,00277}{13,1 \times 10^{-4}} \cong 2,12\frac{m}{s}$$


$$v_3 = \frac{0,00277}{5,57 \times 10^{-4}} \cong 4,97 \frac{m}{s}$$

Para especificarmos os coeficientes de Coriolis, calculamos os números de Reynolds, foi optar em calcular na seção 1, já que na seção (3) ele é maior ainda:

$$Re_1 = \frac{2,12 \times 0,0408}{0.013 \times 10^{-6}} \cong 94738,23 \Rightarrow Re_3 > Re_1$$
 $\alpha_1 = \alpha_3 \cong 1,0$

$$\frac{p_1}{9773.54} + \frac{1 \times 2,12^2}{2 \times 9.8} = \frac{83667,04}{9773.54} + \frac{1 \times 4,97^2}{2 \times 9.8} + H_{p_{1-2}} + H_{p_{2-3}}$$

Portanto, para a determinação da pressão p1, temos que antes determinar as perdas de 1 até 2 e de 2 até 3.

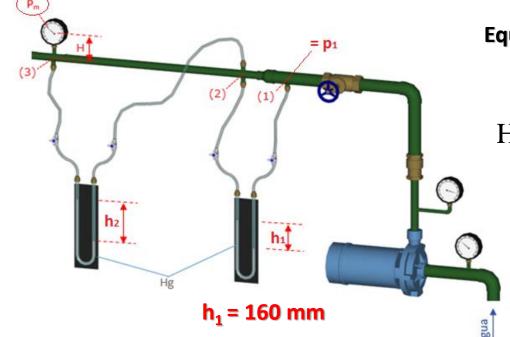
Equação da energia de (2) a (3):

$$H_{2} = H_{3} + H_{p_{2-3}}$$

$$z_{2} + \frac{p_{2}}{\gamma} + \frac{\alpha_{2} \times v_{2}^{2}}{2g} = z_{3} + \frac{p_{3}}{\gamma} + \frac{\alpha_{3} \times v_{3}^{2}}{2g} + H_{p_{2-3}}$$

$$\therefore H_{p_{2-3}} = \frac{p_{2} - p_{3}}{\gamma}$$

Equação manométrica de (2) a (3):
$$p_2-p_3=h_2\times\left(\gamma_{\rm Hg}-\gamma_{\rm água}\right)$$


$$\therefore H_{p_{2-3}} = \frac{0,23 \times (132652,8 - 9773,54)}{9773,54} \cong 2,892m$$

Equação da energia de (1) a (2):

$$H_{1} = H_{2} + H_{p_{1-2}} : z_{1} + \frac{p_{1}}{\gamma} + \frac{\alpha_{1} \times v_{1}^{2}}{2g} = z_{2} + \frac{p_{2}}{\gamma} + \frac{\alpha_{2} \times v_{2}^{2}}{2g} + H_{p_{1-2}}$$

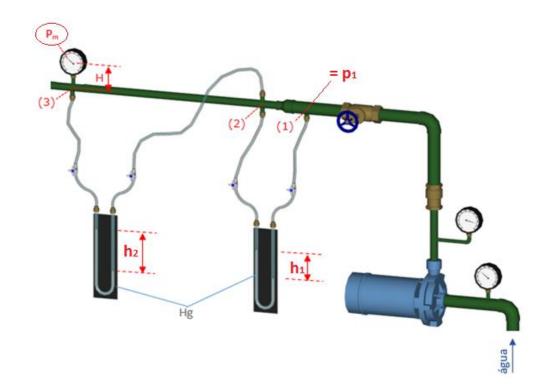
$$H_{p_{1-2}} = \frac{p_1 - p_2}{9773,54} + \frac{1 \times 2,12^2 - 1 \times 4,97^2}{19,6}$$

Temos que achar $p_1 - p_2$

Equação manométrica de (1) a (2):
$$p_1 - p_2 = h_1 \times \left(\gamma_{Hg} - \gamma_{água} \right)$$

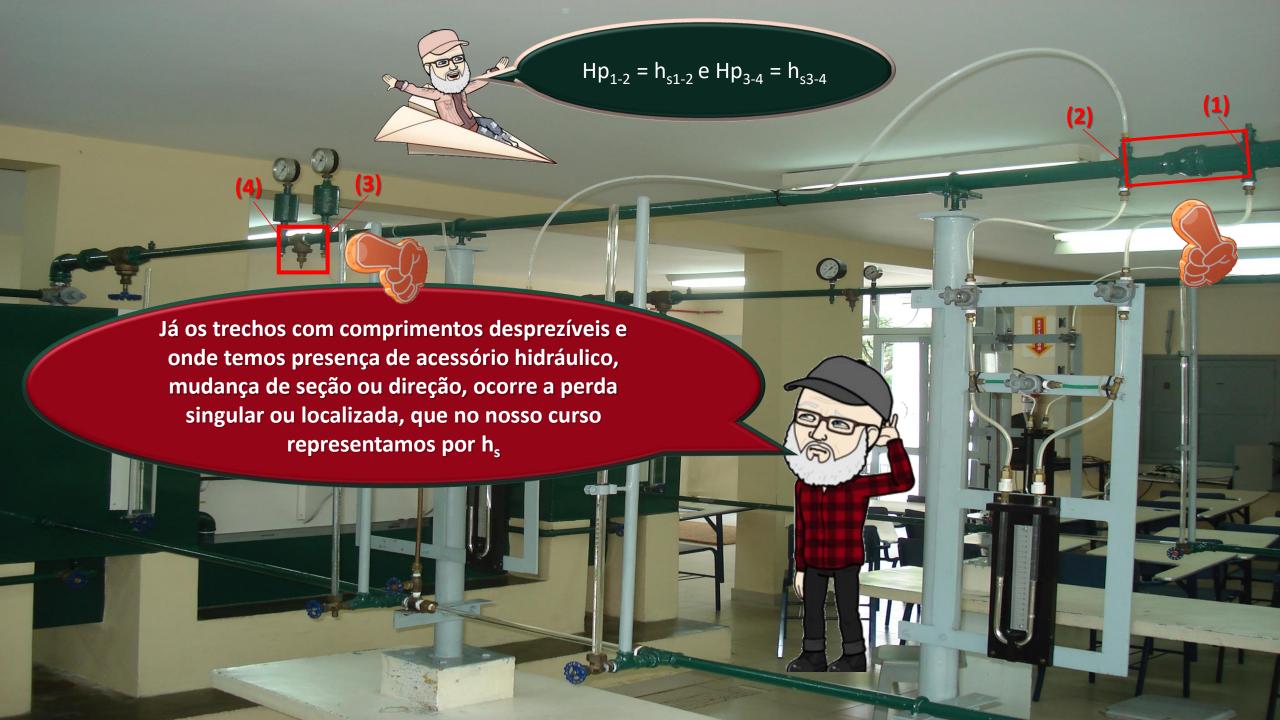
$$H_{p_{1-2}} = \frac{0,160 \times \left(132652,8 - 9773,54\right)}{9773,54} + \frac{1 \times 2,12^2 - 1 \times 4,97^2}{19,6}$$

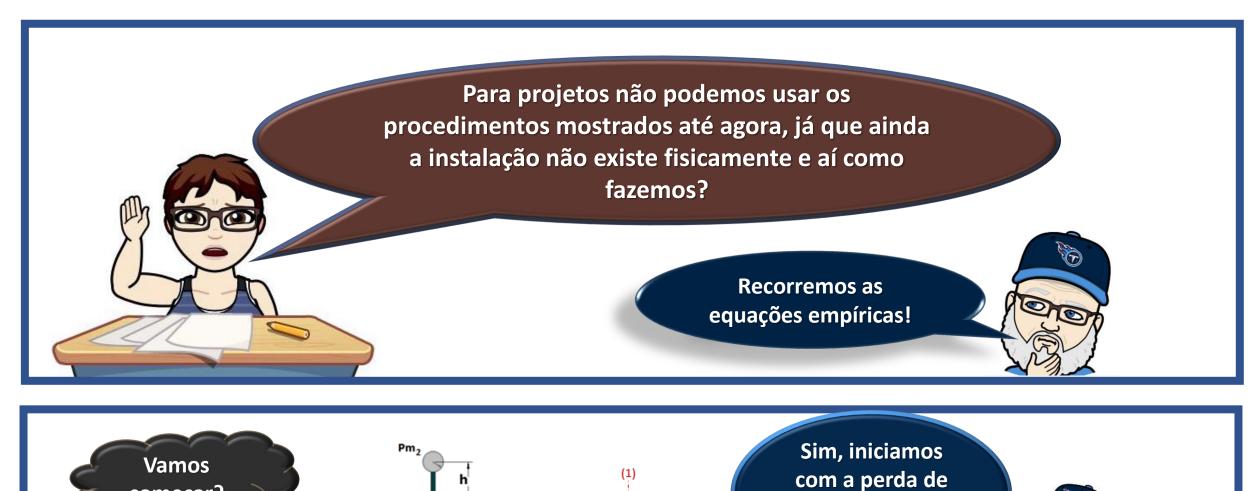
$$H_{p_{1-2}} \cong 0.981m$$

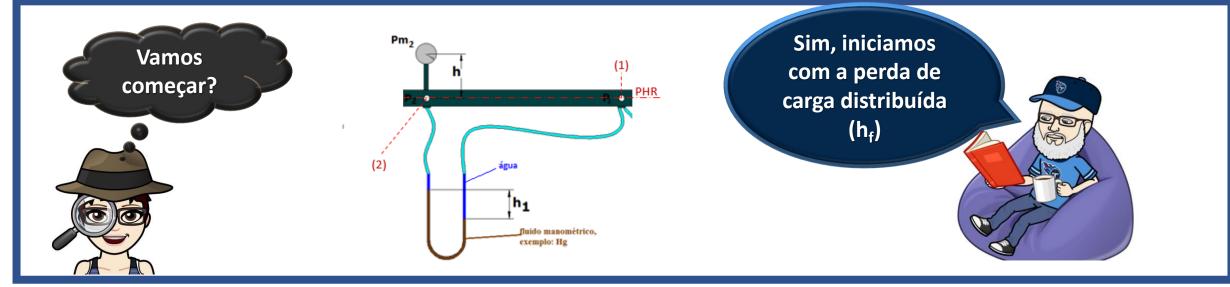

$$\frac{p_1}{9773,54} + \frac{1 \times 2,12^2}{2 \times 9,8} = \frac{83667,04}{9773,54} + \frac{1 \times 4,97^2}{2 \times 9,8} + H_{p_{1-2}} + H_{p_{2-3}}$$

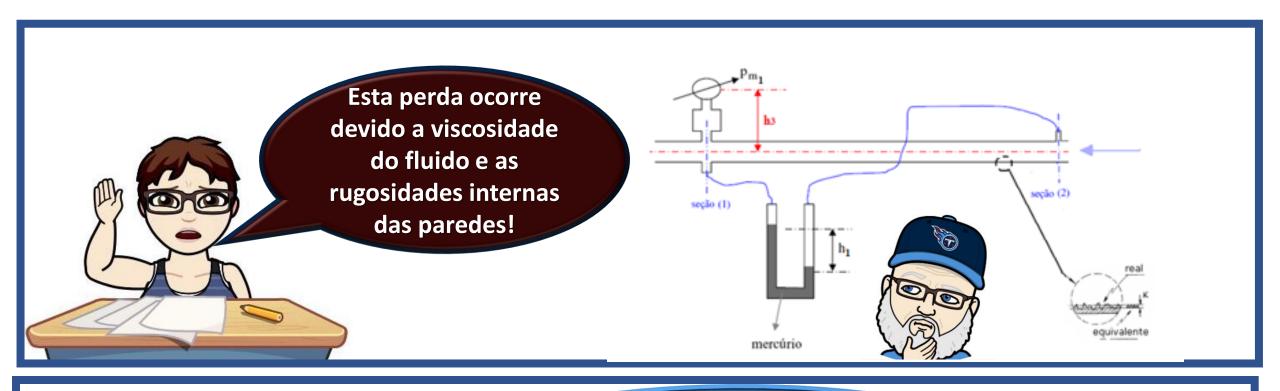
$$\frac{p_1}{9773,54} + 0,2293061224 = 8,560566591 + 1,26025 + 0,981 + 2,892 \Rightarrow p_1 = 131595,9316Pa \cong 131596Pa$$

Pela hidrostática achamos: $p_1 = 131589,9531Pa \cong 131590Pa$ Diferença desprezível





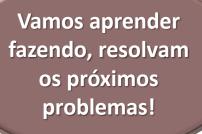

Agora ficou claro porque iniciamos resolvendo os exercícios anteriores com dados experimentais, vamos revê-los na bancada:

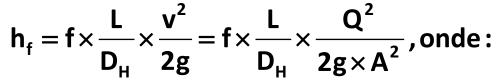


Isso mesmo e não podemos esquecer que estas aumentam com o tempo e originam uma diminuição da vazão!

Tabela 7,1 – Capacidade das canalizações de ferro e aço. (Sem revestimento permanente interno – pg 118 do livro: Manual de Hidráulica – Azevedo Netto

Idade	D = 4" (100 mm)	6" (150 mm)	10" (250 mm)	16" (400 mm)	20" (500 mm)	30" (750 mm)
Tubos novos	Q = 100%	100%	100%	100%	100%	
Após 10 anos	81%	83%	85%	86%	86%	100%
Após 20 anos	68%	72%	74%	75%	76%	87%
Após 30 anos	58 a 62%	65%	67%	68%	69%	77%
Após 40 anos	50 a 55%	58%	61%	62%	63%	
Após 50 anos	43 a 49%	54%	56%	57%	59%	





Existem várias maneiras para este cálculo, nesta aula apresento o seu cálculo pela fórmula universal, também denominada de fórmula de Darcy Weisbach

h_f = perda de carga distribuída ou contínua

f = coeficiente de perda de carga distribuída

L = comprimento do tubo

D_H = diâmetro hidráulico

v = velocidade média do escoamento

g = aceleração da gravidade

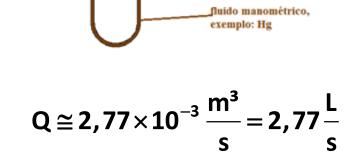
Q = vazão do escoamento

A = área da seção formada pelo fluido

A fórmula universal uma das mais empregadas na indústria, pois pode ser utilizada para qualquer tipo de líquido (fluido incompressível) e para tubulações de qualquer diâmetro e material

Considerando a perda calculada de (2) a (3), especifique o coeficiente de perda de carga distribuída experimental neste tubo.

 $D_N = 1" \rightarrow ANSI B3610 \rightarrow D_{int} = 26,6mm \Leftrightarrow A = 5,57cm^2$


$$Hp_{1-2} \cong 2,892m$$

$$g=9,8\frac{m}{s^2}$$

$$C = 2\pi r$$

$$A = \pi r^{2}$$

$$2\chi = a$$

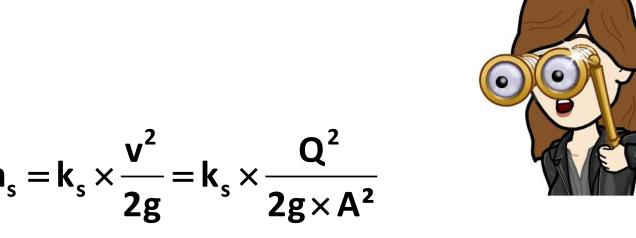
 $L_{1-2} = 2,0m$

Pm₂

(3)

Como trata-se de um tubo de seção transversal circular e forçada, podemos reescrever a fórmula universal.


$$h_{f} = f \times \frac{L}{D} \times \frac{Q^{2}}{2g \times \left(\frac{\pi D^{2}}{4}\right)^{2}} = \frac{16}{2g \times \pi^{2}} \times f \times \frac{L}{D^{5}} \times Q^{2}$$


$$2,892 = \frac{16}{2 \times 9,8 \times \pi^2} \times f \times \frac{2}{0,0266^5} \times (2,77 \times 10^{-3})^2$$

$$\frac{2,892 \times 19,6 \times \pi^{2} \times 0,0266^{5}}{16 \times 2 \times \left(2,77 \times 10^{-3}\right)^{2}} = f \Rightarrow f \cong 0,0303$$

h_s = perda singular ou localizada

K_s = coeficiente de perda de carga singular

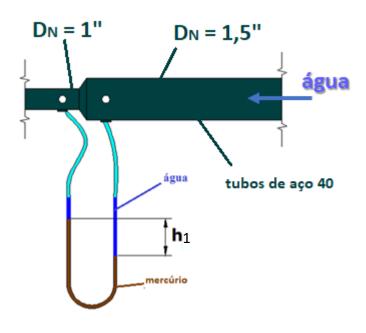
v = velocidade média do escoamento

g = aceleração da gravidade

Q = vazão do escoamento

A = área da seção formada pelo fluido

Considerando a perda calculada de (1) a (2), especifique o coeficiente de perda de carga singular para redução.

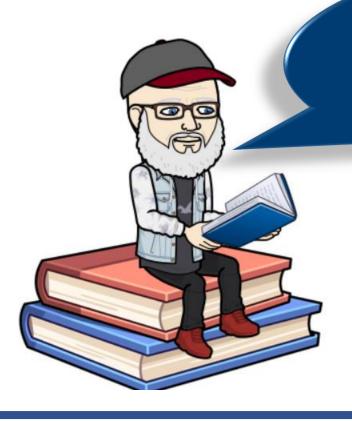


$$Hp_{0-1} \cong 0,981m$$

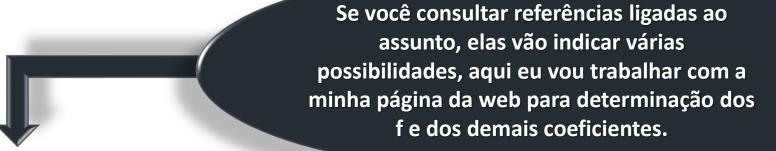
$$g=9,8\frac{m}{s^2}$$

$$D_N = 1.5" \rightarrow ANSI B3610 \rightarrow D_{int} = 40.8mm \Leftrightarrow A = 13.1cm^2$$

$$D_N = 1" \rightarrow ANSI B3610 \rightarrow D_{int} = 26,6mm \Leftrightarrow A = 5,57cm^2$$

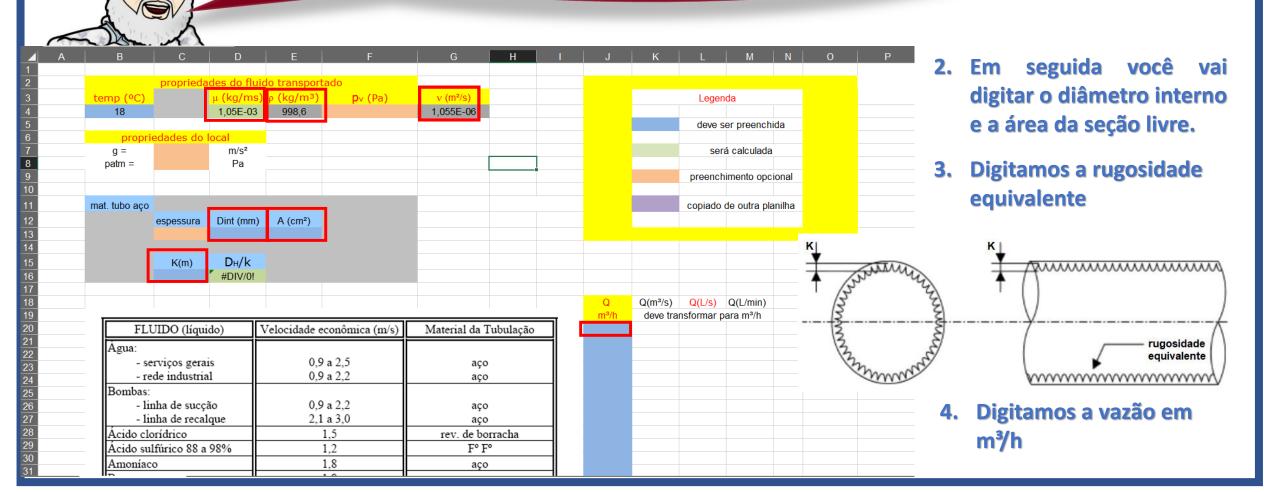

$$Q \cong 2,77 \times 10^{-3} \frac{m^3}{s} = 2,77 \frac{L}{s}$$

Importante: sempre que houver duas velocidades, usamos a velocidade média MAIOR!


$$h_s = k_s \times \frac{v^2}{2g} \Rightarrow 0.891 = K_s \times \frac{4.97^2}{19.6}$$
 $\therefore \frac{0.891 \times 19.6}{4.97^2} = K_s \Rightarrow K_s \cong 0.71$

É dessa maneira que determinamos, tanto as perdas de carga, como os coeficientes de perda de carga experimentalmente e são estas experiências que inspiram as criações das fórmulas empíricas!

No desenvolvimento de projetos não conseguiremos achar o coeficiente de perda de carga distribuída (f), nem o coeficiente de perda de carga singular experimentalmente, como iremos determina-los?



http://www.escoladavida.eng.br/hidraulica I/consultas.htm

CLICAR EM: • Determinação do f, por Haaland, Swamee e Jain, Churchill e planilha

Irá abrir uma planilha Excel com esta, sendo que de princípio ela vale para água até 40° C, não sendo água, ou sendo outro fluido, a viscosidade, a massa específica e a viscosidade cinemática devem ser inseridas digitando.

Clicamos na aba de comparação_f e temos as opções a seguir:

f_{experimental}

Q(m³/h)	v(m/s)	Re	f _{Haaland}	f _{Swamee e Jain}	f _{Churchill}	f _{planilha}	f,
0,0	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	
0,0	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	
0,0	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	
0,0	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	
0,0	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	
0,0	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	
0,0	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	
0,0	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	
0,0	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	
0,0	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	
0,0	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	
0,0	#DIV/0!	#DIV/0!	#DIV/0I	#DIV/01	ייטועעומיי	#DIV/0!	
0,0	#DIV/0!	#DIV//					

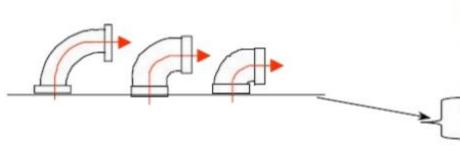
Não esqueça que para escoamento Laminar não precisamos da planilha:

 $Re \le 2000 \rightarrow esc.$ laminar

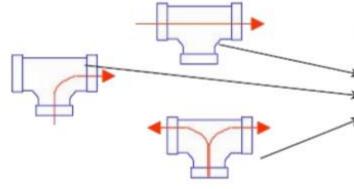
$$f = \frac{64}{Re} \Leftrightarrow Re = \frac{\rho v D_H}{\mu} = \frac{v D_H}{\nu}$$

Exemplos:

Rugosidade aproximada de tubos comuns


TUDOS	RUGOSIDADE, K						
TUBOS	Milímetros	Pés					
Aço rebitado	0,9 - 9	0,003 - 0,03					
Concreto	0,3 - 3	0,001 - 0,001					
Madeira	0,2 - 0,9	0,0006 - 0,003					
Ferro fundido	0,26	0,00085					
Ferro galvanizado	0,15	0,0005					
Ferro fundido asfaltado	0,12	0,0004 0,00015 0,000005					
Aço comercial ou ferro forjado	0,046						
Trefilado	0,0015						

Introdução_e_dados

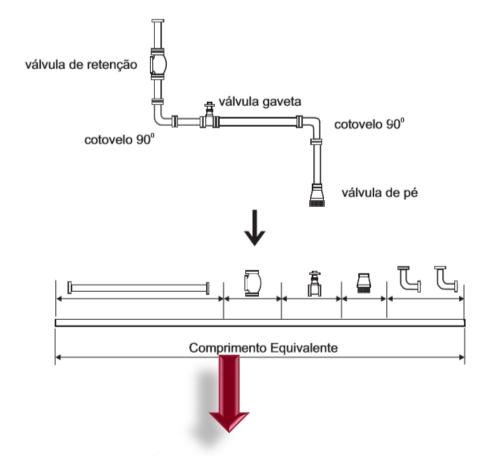

propriedades d'água | Haaland | Swamee e Jain | Churchill

comparação_f

Valores do coeficiente K_s, para os elementos mais comuns das canalizações, são apresentados na tabela a seguir:

h -k × '	$y^2 - k \vee$	Q^2
$h_s = k_s \times -\frac{1}{2}$	${2g} - \kappa_s \times$	$\overline{2g\times A^2}$

Singularidade	Ks
Alargamento gradual	0,30
Bocais	2,75
Comporta aberta	1
Curva de raío Longo	0,25 a 0,40
Curva de raio curto (cotovelo de 90°)	0,9 até 1,5
Curva de 45 ⁰	0,20
Cotovelo de 45°	0,40
Curva de 22º 30'	0,10
Curva de retorno	2,2
Crivo	0,75
Redução gradual	0,15
Medidor venturi	2,5
Registro de gaveta aberto	0,2
Registro de globo aberto	10
Registro de ângulo aberto	5
Junção	0,40
T de passagem direta	0,60
T de saida tateral	1,3
T de saida bilateral	1,8
Válvula de retenção	2,5
Válvula de pé	1,75



Outras fontes devem ser consultadas e sempre que possível, considere os valores fornecidos pelo fabricante da singularidade. Os valores da Tupy e da MIPEL, podem ser acessados na página:

http://www.escoladavida.eng.br/hidraulica I/consultas.htm

Para projetos é mais comum trabalharmos com os comprimentos equivalentes (Leq)

Exemplo de valores de comprimentos equivalentes:

$$h_f = f \times \frac{\left(L + \sum Leq\right)}{D_H} \times \frac{v^2}{2g} = f \times \frac{\left(L + \sum Leq\right)}{D_H} \times \frac{Q^2}{2g \times A^2}$$

Outras fontes devem ser consultadas e sempre que possível, considere os valores fornecidos pelo fabricante da singularidade. Os valores da Tupy e da MIPEL, podem ser acessados na página:

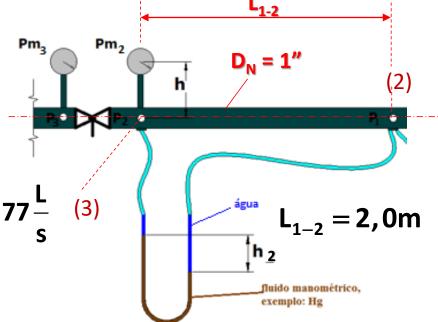
http://www.escoladavida.eng.br/hidraulica_I/consultas.htm

Comprimentos equivalentes a perdas localizadas. (Expressos em metros de canalização retilínea)*

DIĀM	ETRO	COTOVELO 90* RAIO LONGO	COTOVELO 90° RAIO MÉDIO	COTOVELO 90° RAIO CURTO	COTOVELO 45*	CURVA 90° R / D - 1 1/2	CURVA 90" R / D - 1	CURVA 45°	ENTRADA NORMAL	ENTRADA DE BORDA	REGISTRO DE GAVETA ABERTO	REGISTRO DE GLOBO ABERTO	REGISTRO DE ANGULO ABERTO	TÊ PASSAGEM DIRETA	TÊ SAÍDA DE LADO	TÊ SAÎDA BILATERAL	VÁLVULA DE PÉ E CRIVO	SAÍDA DA CANALIZAÇÃO	VÁLVULA DE RETENÇÃO TIPO LÊVE	VÁLVILIA DE RETENÇÃO TIPO PESADO
DIÂME	pol.	Ŋ	Ø		△	0	Ø	\bigcirc	ⅎ	*				₽	₽	₩		2	ŒÞ	Ġ
13	1/2	0,3	0,4	0,5	0,2	0,2	0,3	0,2	0,2	0,4	0,1	4,9	2,6	0,3	1,0	1,0	3,6	0,4	1,1	1,6
19	3/4	0,4	0,6	0,7	0,3	0,3	0,4	0,2	0,3	0,5	0,1	6,7	3,6	0,4	1,4	1,4	5,6	0,5	1,6	2,4
25	1	0,5	0,7	0,8	0,4	0,3	0,5	0,2	0,3	0,7	0,2	8,2	4,6	0,5	1,7	1,7	7,3	0,7	2,1	3,2
32	1 1/4	0,7	0,9	1,1	0,5	0,4	0,6	0,3	0,4	0,9	0,2	11,3	5,6	0,7	2,3	2,3	10,0	0,9	2,7	4,0
38	1 1/2	0,9	1,1	1,3	0,6	0,5	0,7	0,3	0,5	1,0	0,3	13,4	6,7	0,9	2,8	2,8	11,6	1,0	3,2	4,8
50	2	1,1	1,4	1,7	0,8	0,6	0,9	0,4	0,7	1,5	0,4	17,4	8,5	1,1	3,5	3,5	14,0	1,5	4,2	6,4
63	2 1/2	1,3	1,7	2,0	0,9	0,8	1,0	0,5	0,9	1,9	0,4	21,0	10,0	1,3	4,3	4,3	17,0	1,9	5,2	8,1
75	3	1,6	2,1	2,5	1,2	1,0	1,3	0,6	1,1	2,2	0,5	26,0	13,0	1,6	5,2	5,2	20,0	2,2	6,3	9,7
100	4	2,1	2,8	3,4	1,3	1,3	1,6	0,7	1,6	3,2	0,7	34,0	17,0	2,1	6,7	6,7	23,0	3,2	6,4	12,9
125	5	2,7	3,7	4,2	1,9	1,6	2,1	0,9	2,0	4,0	0,9	43,0	21,0	2,7	8,4	8,4	30,0	4,0	10,4	16,1
150	6	3,4	4,3	4,9	2,3	1,9	2,5	1,1	2,5	5,0	1,1	51,0	26,0	3,4	10,0	10,0	39,0	5,0	12,5	19,3
200	8	4,3	5,5	6,4	3,0	2,4	3,3	1,5	3,5	6,0	1,4	67,0	34,0	4,3	13,0	13,0	52,0	6,0	16,0	25,0
250	10	5,5	6,7	7,9	3,8	3,0	4,1	1,8	4,5	7,5	1,7	85,0	43,0	5,5	16,0	16,0	65,0	7,5	20,0	32,0
300	12	6,1	7,9	9,5	4,6	3,6	4,8	2,2	5,5	9,0	2,1	102,0	51,0	6,1	19,0	19,0	78,0	9,0	24,0	38,0
350	14	7,3	9,5	10,5	5,3	4,4	5,4	2,5	6,2	11,0	2,4	120,0	60,0	7,3	22,0	22,0	90,0	11,0	28,0	45,0

^{*} Os valores indicados para registros de globo, aplicam-se também às torneiras, válvulas para chuveiros e válvulas de descarga.

23


 $g=9.8\frac{m}{s^2}$

Considerando o trecho de (2) a (3), calcule a perda de carga distribuída neste trecho.

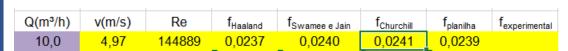
$$Q \cong 2,77 \times 10^{-3} \frac{m^3}{s} = 2,77 \frac{L}{s}$$
 (3)

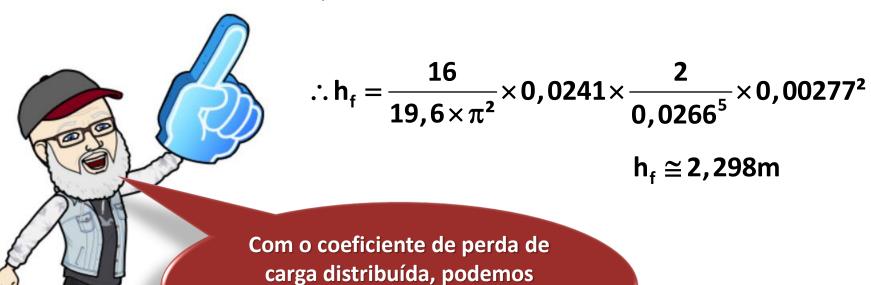
$$K_{aço} = 4,6 \times 10^{-5} \,\mathrm{m}$$

$$D_N = 1" \rightarrow ANSI B3610 \rightarrow D_{int} = 26,6mm \Leftrightarrow A = 5,57cm^2$$

Conduto de seção circular e forçado:


$$h_f = \frac{16}{2g \times \pi^2} \times f \times \frac{L}{D^5} \times Q^2$$


$$\therefore h_f = \frac{16}{19.6 \times \pi^2} \times f \times \frac{2}{0.0266^5} \times 0,00277^2$$


$$h_f = f \times \frac{L}{D_H} \times \frac{v^2}{2g}$$

$$h_f = f \times \frac{L}{D_H} \times \frac{Q^2}{2g \times A^2}$$

Obtivemos f = 0.0241

calcular a perda de carga distribuída no trecho.

O valor obtido com os dados do laboratório foi 2,892 m, cerca de 20,5% maior e está coerente já que a tubulação da bancada não é nova, tem cerca de 20 anos, com o envelhecimento ocorre a alteração na rugosidade e em consequência um aumento da perda de carga.