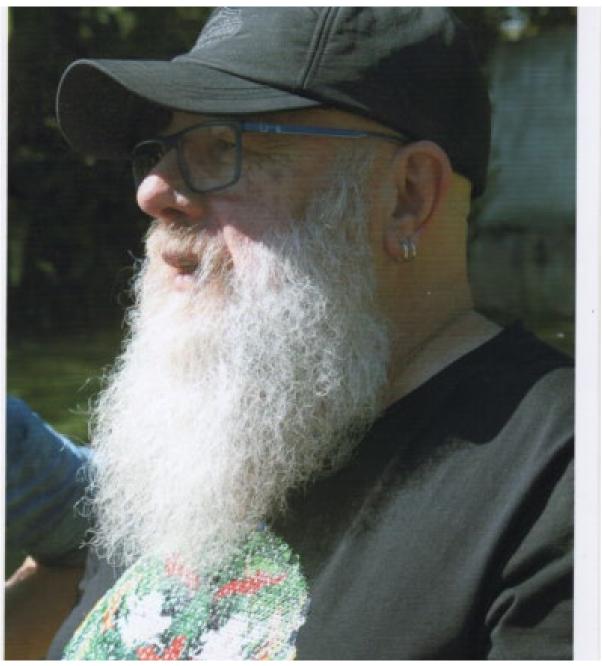
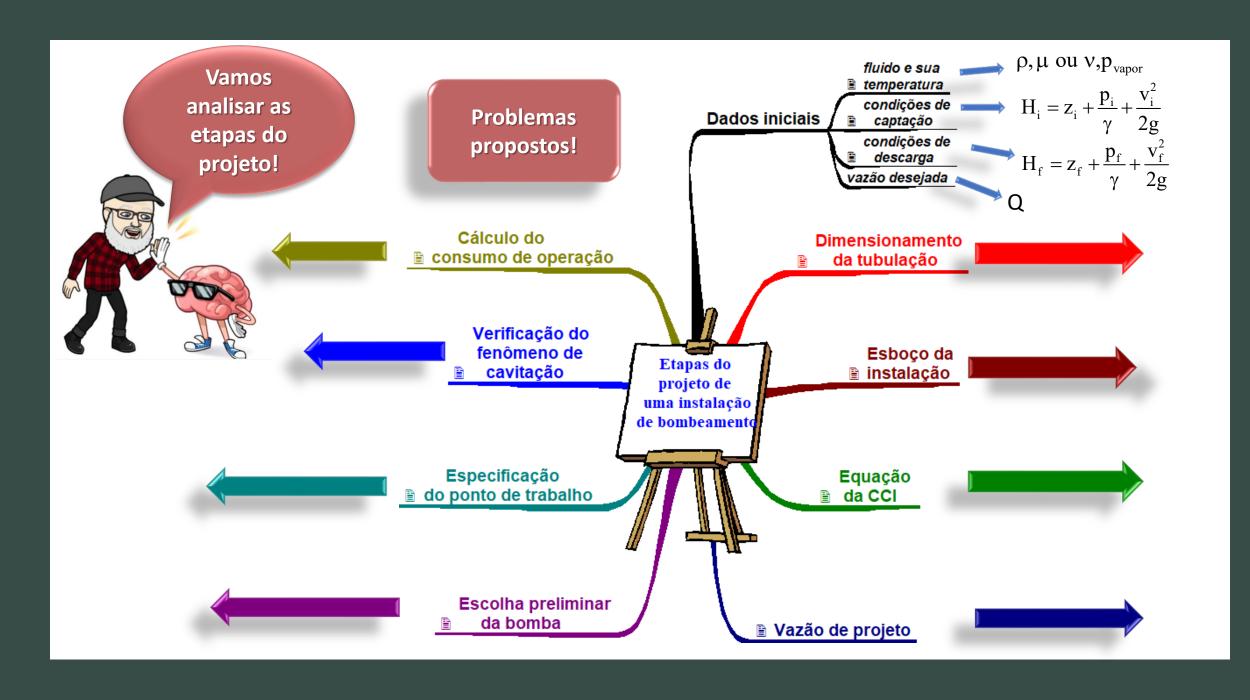
PROJETO DE UMA INSTALAÇÃO DE BOMBEAMENTO BÁSICA




RAIMUNDO FERREIRA IGNÁCIO

Iniciamos o dimensionamento SEMPRE pela tubulação após a bomba, ou seja, tubulação de recalque!

Com a aplicação da instalação e a vazão desejada (Q = volume/tempo = velocidade média x área da seção formada pelo fluido) dimensionamos os tubos, ou seja especificamos o seu material, seu diâmetro nominal, sua espessura, seu diâmetro interno e a sua área de seção livre, para tal devemos recorrer a expressão a seguir: $Q = V \times A$

Vamos resolver o exemplo a seguir.

Em função do fluido se tem a velocidade econômica e o material mais usado na fabricação do tubo, isto para o recalque, veja uma das possibilidades:

FLUIDO (líquido)	Velocidade econômica (m/s)	Material da Tubulação		
Água:				
 serviços gerais 	0,9 a 2,5	aço		
 rede industrial 	0,9 a 2,2	aço		
Bombas:				
 linha de sucção 	0,9 a 2,2	aço		
 linha de recalque 	2,1 a 3,0	aço		
Ácido clorídrico	1,5	rev. de borracha		
Ácido sulfúrico 88 a 98%	1,2	F° F°		
Amoníaco	1,8	aço		
Benzeno	1,8	aço		
Cloro	1,5	aço		
FLUIDO (líquido)	Velocidade econômica (m/s)	Material da Tubulação		
Clorofórmio	1,8	cobre e aço		
Hidróxido de sódio				
- solução até 30%	1,8	aço		
- solução de 30 a 50%	1,5	aço		
- solução de 50 a 73%	1,2	aço		
Óleo lubrificante	1,8	aço		
Óleo combustível	1,8	aço		
Salmoura (CaCl ₂)	1,2	aço		
Tetracloreto de Carbono	1,8	aço		
Tricloro etileno	1,8	aço		

51. Uma instalação de bombeamento foi projetada para transportar amoníaco com uma vazão de 3,2 L/s, pede-se dimensionar os tubos da mesma.

Considerando a tabela do slide anterior, temos:

Tendo a velocidade econômica, no caso 1,8 m/s, podemos calcular o diâmetro interno de referência:

$$Q = v \times A \rightarrow 3, 2 \times 10^{-3} = 1, 8 \times \frac{\pi \times D_{dB_{ref}}^{2}}{4}$$

$$D_{dB_{ref}} = \left[\sqrt{\frac{4 \times 3, 2 \times 10^{-3}}{1, 8 \times \pi}} \right] \times 1000$$

$$D_{dB_{ref}} \cong 47,6mm$$

Os diâmetros comerciais de aço-carbono estão definidos pela norma americana ANSI B 36.10 e B 36.19.

Todos esses tubos são designados por um número chamado "Diâmetro Nominal" ou "Bitola Nominal", onde o diâmetro nominal de 1/8 até 12" não corresponde a nenhuma dimensão física dos tubos; de 14 até 36", o diâmetro nominal coincide com o diâmetro externo dos tubos. Para cada diâmetro nominal fabricam-se tubos com várias espessuras de parede, porém sempre com o mesmo diâmetro externo.

A seguir, fornecemos a tabela como exemplo de tubos de aço – dimensões normalizadas de acordo com as Normas ANSI B.36.10 (para tubos de aço-carbono e aços de baixa liga), e B.36.19 (para tubos de aços inoxidáveis).

Notas:

- 1 A norma ANSI B.36.19 só abrange tubos até o diâmetro nominal de 12".
- 2 As designações "Std", "XS" e "XXS" correspondem às espessuras denominadas "normal", "extra-forte", e "duplo extra-forte" da norma ANSI B.36.10. As designações 10, 20, 30, 40, 60, 80, 100, 120 e 160 são "números de série" (schedulle number) dessa mesma norma. As designações 5S, 10S, 40S e 80S são da norma ANSI B.36.19.
- 3 As espessuras em mm indicadas na tabela são os valores nominais; as espessuras mínimas correspondentes dependerão das tolerâncias de fabricação, que variam com o processo de fabricação do tubo. Para os tubos sem costura a tolerância usual é ± 12,5% do valor nominal.

Notas (cont.):

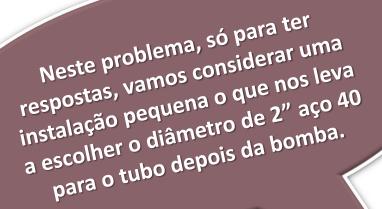
- 4 Nesta tabela estão omitidos alguns diâmetros e espessuras não usuais na prática. Para a tabela completa, contendo todos os diâmetros e espessuras, consulte as normas ANSI B 36.10 e B 36.19.
- 5 Os pesos indicados nesta tabela correspondem aos tubos de aço-carbono ou de aços de baixa liga. Os tubos de aços inoxidáveis ferríticos pesam cerca de 5% menos, e os de inoxidáveis austeníticos cerca de 2% mais.

Para o problema 51, temos: $D_{dB_{ref}} \cong 47,6mm$

$$D_N = 1.5" \Rightarrow D_{int} = 40.8mm$$

 $D_{dB_{ref}} \Rightarrow 47.6 mm$
 $D_N = 2" \Rightarrow D_{int} = 52.5mm$

Diâmetro nominal	Designação de	Espessura de parede	Diâmetro interno	Area da seção	Area da seção	Superficie externa	(k	roximado g/m)	Moment o de	Momento resistente	Raio de giração
(pol)	espessura.	(mm)	(mm)	livre (cm²)	de metal	(m ² /m)	Tubo vazio	Conteúdo de água	inércia (cm ⁴)	(cm ³)	(cm)
Diametro					(cm ²)		(Nota 5)				
(mm)	(v. Nota 2)	(v. Nota 3)									
1/4	105	1,65	10.4	0,85	0.62	0.043	0.49	0.085	0,116	0,169	0,430
	Std, 40, 40S XS, 80, 80S	2,23 3,02	9,2 7,7	0,67 0,46	0,81 1,01	0,010	0,62 0,79	0,067 0,046	0,138 0,157	0,202 0,229	0,413 0,393
13,7											
1/8	10S Std, 40, 40S XS, 80, 80S	1,65 2,31 3,20	13,8 12,5 10,7	1,50 1,23 0,91	0,81 1,08 1,40	0,054	0,63 0,84 1,10	0,150 0,123 0,090	0,236 0,304 0,359	0,285 0,354 0,419	0,551 0,531 0,506
17,1											
½ -	Std, 40, 40S XS, 80, 80S 160 XXS	2,77 3,73 4,75 7,47	15,8 13,8 11,8 6,4	1,96 1,51 1,10 0,32	1,61 2,06 2,47 3,52	0,071	0,42 1,62 1,94 2,55	0,20 0,15 0,11 0,03	0,71 0,84 0,92 1,01	0,67 0,78 0,86 0,95	0,66 0,64 0,61 0,56
21											
3/4	Std, 40, 40S XS, 80, 80S 160 XXS	2,87 3,91 5,54 7,82	20,9 18,8 15,6 11,0	3,44 2,79 1,91 0,95	2,15 2,80 3,68 4,63	0,083	1,68 2,19 2,88 3,63	0,34 0,28 0,19 0,10	1,54 1,86 2,19 2,41	1,16 1,40 1,65 1,81	0,85 0,82 0,77 0,72
27			_	5,57		0.105					
1 -	Sed, 40, 40S XS, 80, 80S 160 XXS	3,37 4,55 6,35 9,09	26,6 24,3 20,7 15,2	4,64 3,37 1,82	3,19 4,12 5,39 6,94	0,105	2,50 3,23 4,23 5,44	0,56 0,46 0,34 0,18	2,64 4,40 5,21 5,85	2,18 2,63 3,12 3,50	1,07 1,03 0,98 0,92
33	Std. 40, 40S	3,56	35	9,65	4,32	0,132	3,38	0,96	8,11	3,85	1,37
11/4	XS, 80, 80S 160 XXS	4,85 6,35 9,70	32,5 29,4 22,7	8,28 6,82 4,07	5,68 7,14 9,90	0,132	4,46 5,60 7,76	0,83 0,68 0,41	10,06 11,82 14,19	4,77 5,61 6,74	1,33 1,29 1,20
42	Sed 40 40S	2.40		***		0.161	101	1.01	12.00		1.60
11/2	XS, 80, 80S 160 XXS	3,68 5,08 7,14 10,16	40,8 38,1 33,9 27,9	13,1 11,4 9,07 6,13	5,15 6,89 9,22 12,2	0,151	4,04 5,40 7,23 9,53	1,31 1,14 0,91 0,61	12,90 16,27 20,10 23,64	5,34 6,75 8,33 9,80	1,58 1,54 1,48 1,39
2	Std. 40 40S	3,91	52.5	21,7	6,93	0,196	5,44	2,17	27,72	9,20	2,00
60	XS, 80, 80S 160 XXS	5,54 8,71 11,07	49,2 42,9 38,2	19,0 14,4 11,4	9,53 14,1 17,1	,,,,,	7,47 11,08 13,44	1,90 1,44 1,14	36,13 48,41 54,61	11,98 16,05 18,10	1,95 1,85 1,79
2½	Std, 40, 40S XS, 80, 80S	5,16 7,01	62,7 59,0	30,9 27,3	11,0 14,5	0,235	8,62 11,40	3,09 2,73 2,29	63,68 80,12	17,44 21,95	2,41 2,35
72	160 XXS	9,52 14,0	54,0 44,9	22,9 15,9	19,0 26,0		14,89 20,39	1,59	97,94 119,5	26,83 32,75	2,27 2,14
73	105	3,05	82,8	53,9	8,22	0,282	6.44	5,39	75,84	17,06	3,04
-	Std, 40, 40S XS, 80, 80S	5,48 7,62	77,9 73,6	47,7 42,6	14,4 19,5	-,,,,,,	11,28 15,25	5,39 4,77 4,26	125,70 162,33	28,26 36,48	2,96 2,89
89	160 XXS	11,1 15,2	66,7 58,4	34,9 26,8	27,2 35,3		21,31 27,65	3,49 2,68	209,36 249,32	47,14 56,22	2,78 2,66


Se a instalação for considerada grande, custo da BOMBA + Motor + custo DE OPERAÇÃO menos significativo do que o custo da tubulação, podemos optar pelo menor diâmetro, no caso aço 40 de diâmetro nominal de 1,5"

Se a instalação for considerada pequena, custo da BOMBA + Motor + DE OPERAÇÃO mais significativo do que o custo da tubulação, podemos optar pelo maior diâmetro, no caso aço 40 de diâmetro nominal de 2"

Como ainda não podemos efetuar a análise anterior, desenvolvemos o projeto para os dois diâmetros anteriores e deixamos a decisão da escolha para o final do projeto.

 $D_N = 2" \rightarrow aço 40$

 $D_{int} = 52,5mm \rightarrow A = 21,7cm^2$

Para o tubo antes da bomba, na tentativa de evitar o fenômeno de cavitação, adotamos um diâmetro comercial imediatamente superior, portanto, diâmetro antes da bomba de 2,5" aço 40.

$$D_N = 2, \overline{5"} \rightarrow \text{aço } 40$$

$$D_{int} = 62,7mm \rightarrow A = 30,9cm^2$$

Voltar as etapas do projeto!

Existem outras maneiras de dimensionamento das tubulações que devem ser pesquisadas.

No caso da tubulação de PVC

No caso da tubulação de PVC

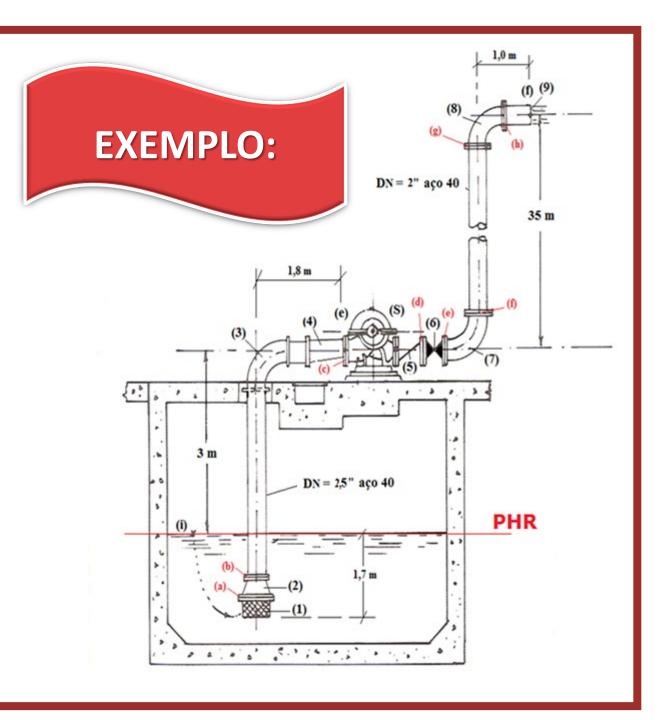
pode-se ainda especificar o

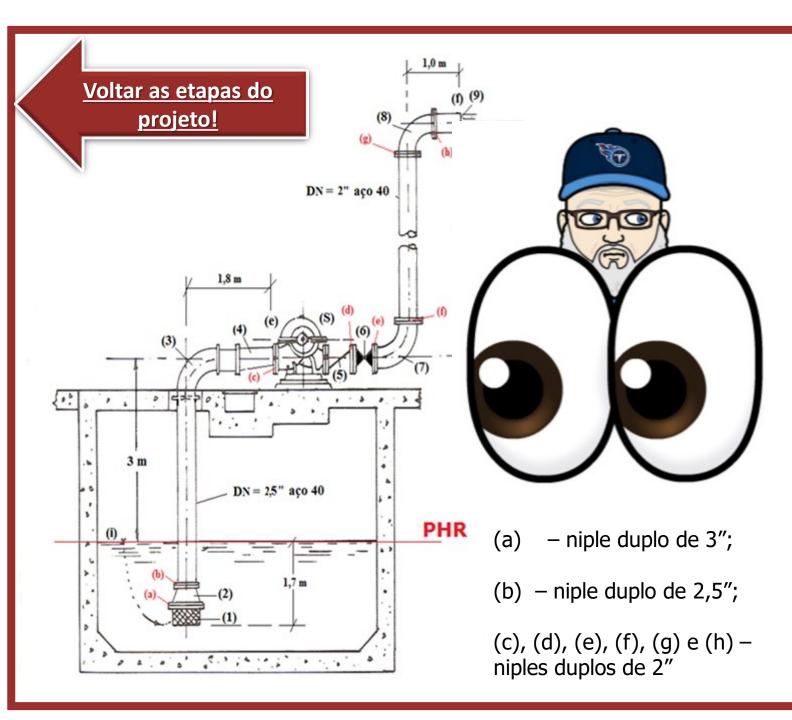
pode-se ainda especificar o

através da

diâmetro de referência através da

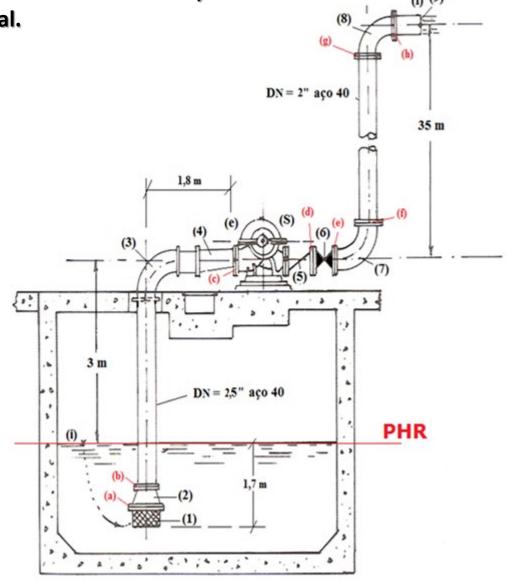
vazão como mostra a tabela a


seguir:



Com o esboço da instalação, temos:

- os comprimentos das tubulações;
- 2. também os acessórios hidráulicos e isto permite ter os seus comprimentos equivalentes;
- 3. podemos estabelecer todas as cotas, inclusive o melhor caminho para o escoamento.



- 1 válvula de poço da Mipel de 3"
- 2 redução concêntrica da Tupy 3"x 2,5"
- 3 curvas fêmeas de 90º de 2,5"
- 4 redução concêntrica de 2,5" x 2" da Tupy
- 5 válvula de retenção horizontal da Mipel de 2"
- 6 Válvula globo reta sem guia da Mipel de 2"
- 7 e 8 curvas fêmeas de 90º de 2" da Tupy
- 9 saída da tubulação de 2" da Tupy

A equação da CCI representa a carga que deve ser fornecida ao fluido transportado, para que ele escoe com uma vazão Q. No caso de uma instalação com uma entrada e uma saída, a CCI é obtida aplicando-se a equação da energia entre a seção inicial e final.

52. A instalação é projetada para transporta a água a 25°C com uma vazão desejada de 4,2 L/s. Inicialmente, vamos obter a equação da curva característica da instalação (CCI)

Importante: a equação da CCI sempre será escrita em função da vazão, portanto onde existir a velocidade média, esta deve ser substituída pela vazão que será a nossa variável independente. Em alguns casos a CCI também ficará em função dos "f".

$$H_{\text{inicial}} + H_{\text{sistema}} = H_{\text{final}} + H_{p_{\text{totais}}} \rightarrow 0 + H_{\text{S}} = 38 + \frac{Q^2}{2 \times 9,8 \times \left(21,7 \times 10^{-4}\right)^2} + H_{p_{3"}} + H_{p_{2,5"}} + H_{p_{2"}}$$

$$0 + H_S = 38 + 10834, 9 \times Q^2 + H_{p_{3"}} + H_{p_{2,5"}} + H_{p_{2"}}$$

De 3", temos:

1 – válvula de poço da Mipel de 3"

a – niple duplo de 3"

Equivalência da Perda de Carga das Conexões TUPY BSP em Metros de Tubos de Aço Galvanizados

DIÂMETRO NOMINAL	1/4	²/ ₃	1/2	8/4	1	11/4	11/2	2	21/2	3	4	5	6
			0,27	0,41	0,55	0,68	0,82	1,04	1,37	1,64	2,18		
	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01		

Tabela 16: Comprimento equivalente de tubulação - Máximos valores previstos para válvulas de bronze (m)

	Tubela 10	. compris	rento equ	ivalente d	c tabalaye	io - maxiii	ios valore	- previste	o para va	valus ac	or ornee (iii	,
DN	Est	fera		Retenção		Gaveta	Macho			Globo		
	Pass. plena	Pass. reduzida	Portinhola	Horizontal	Vertical e poço			Reta c/ guia	Retas/ guia	Angular c/ guia	Angular s/ guia	Oblíqua
6	0,16	0,16	-	5,80	-	0,16	0,55	5,80	4,27	2,44	1,77	1,77
10	0,43	0,16	-	5,80	-	0,16	0,55	5,80	4,27	2,44	1,77	1,77
15	0,20	0,29	0,76	7,62	6,75	0,21	0,70	7,62	5,10	3,05	2,22	2,22
20	0,27	1,18	1,03	9,75	8,73	0,28	0,91	9,75	7,31	4,30	2,74	2,74
25	0,33	0,83	1,28	12,19	10,97	0,33	1,18	12,19	8,54	5,18	3,66	3,66
32	0,46	1,83	1,77	15,85	14,62	0,46	1,53	15,85	11,88	7,00	4,88	4,88
40	0,55	1,41	2,04	19,20	17,07	0,55	1,83	19,20	13,72	7,92	5,79	5,79
50	0,70	4,52	2,68	25,00	19,81	0,70	2,13	25,00	17,68	10,36	7,26	7,26
65	0,85	3,62	3,10	28,95	26,80	0,85	2,75	28,95	21,38	-	-	-
80	1,03	3,09	3,95	36,60	32,00	1,03	3,50	38,60	25,90	-	-	-
100	-	-	5,18	45,70	42,65	1,30	4,50	45,70	-	-	-	-
125	-	-	-	-	54,80	1,70	-	-	-	-	-	-
150	-	-	-	-	64,00	2,00	-	-	-	-	-	-
200	-	-	-	-	-	2,75	-	-	-	-	-	-

$$H_{p_{3"}} = f_{3"} \times \frac{\left(L + \sum Leq\right)_{3"}}{D_{H_{3"}}} \times \frac{Q^2}{2 \times g \times A_{3"}^2}$$

$$H_{p_{3"}} = f_{3"} \times \frac{(0+32,01)}{0,0779} \times \frac{Q^2}{19,6 \times (47,7 \times 10^{-4})^2} \rightarrow H_{p_{3"}} = f_{3"} \times 921415,3 \times Q^2$$

Para 2,5", temos L = 6,5 m e:

- (2) redução concêntrica da Tupy 3"x 2,5"
- (3) curvas fêmeas de 90º de 2,5"
- (b) niple duplo de 2,5"

Equivalência da Perda de Carga das Conexões TUPY BSP em Metros de Tubos de Aço Galvanizados

DIÂMETRO NOMINAL	1/4	3/3	1/2	8/4	1	11/4	11/2	2	21/2	3	4	5	6
			0,27	0,41	0,55	0,68	0,82	1,04	1,37	1,64	2,18		
	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01		

DIÂMETRO NOMINAL	³ /s X ¹ /4	1/2 X 1/4	1/2 X ³ /8	3/4 X 1/4	³ /4 X ³ /8	³ /4 X ¹ /2	1 x ³/s	1 x 1/2	1 x ³ / ₄	1 ¹ /4 x ¹ /2	1 ¹ /4 X ³ /4	11/4 x 1	1 ¹ / ₂ x ¹ / ₂	1 ¹ / ₂ x ³ / ₄	1 ¹ / ₂ x 1	1 ¹ / ₂ x 1 ¹ / ₄
DIÂM NOM	2 x ¹ / ₂	2 x ³ / ₄	2 x 1	2 x 1 ¹ / ₄	2 x 1 ¹ / ₂	2½ x 1	2½ x 1¼	2 ¹ /2 x 1 ¹ /2	2 ¹ / ₂ x 2	3 x 1	3 x 1 ¹ / ₄	3 x 1 ¹ / ₂	3 x 2	3 x 2 ¹ / ₂	4 x 2	4 x 3
R	0,11	0,18	0,18		0,26	0,32	0,30	0,32	0,29	0,33	0,43	0,16		0,53	0,27	0,12
			0,30	0,35	0,38		0,44	0,48	0,64			0,71	0,70	0,71		

$$H_{p_{2"}} = f_{2"} \times \frac{\left(L + \sum Leq\right)_{2"}}{D_{H_{2"}}} \times \frac{Q^2}{2 \times g \times A_{2"}^2}$$

$$H_{p_{2,5"}} = f_{2,5"} \times \frac{(6,5+2,09)}{0,0627} \times \frac{Q^2}{19,6 \times (30,9 \times 10^{-4})^2}$$

$$H_{p_{2,5"}} = f_{2,5"} \times 732069, 98 \times Q^2$$

De maneira análoga, determinamos a perda para 2"

Para 2", temos L = 36 m e:

(c), (d), (e), (f), (g) e(h) niples duplos de 2"

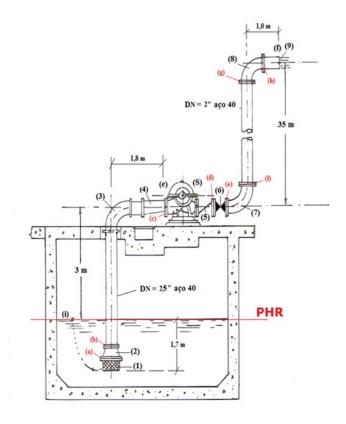
- 4 redução concêntrica de 2,5" x 2" da Tupy
- 5 válvula de retenção horizontal da Mipel de 2"
- 6 Válvula globo reta sem guia da Mipel de 2"
- 7 e 8 curvas fêmeas de 90° de 2" da Tupy
- 9 saída da tubulação de 2" da Tupy

Tabela 16: Comprimento equivalente de tubulação - Máximos valores previstos para válvulas de bronze (m

DN	Est	iera.		Retenção		Gaveta	Macho			Globo			
	Pass.	Pass.	Portinhola	Horizontal	Vertical			Reta c/	Reta s/	Angular	Angular	Oblíqua	
	plena	reduzida			e poço			guia	guia	c/ guia	s/ guia		
6	0,16	0,16	-	5,80	-	0,16	0,55	5,80	4,27	2,44	1,77	1,77	
10	0,43	0,16	-	5,80	-	0,16	0,55	5,80	4,27	2,44	1,77	1,77	
15	0,20	0,29	0,76	7,62	6,75	0,21	0,70	7,62	5,10	3,05	2,22	2,22	
20	0,27	1,18	1,03	9,75	8,73	0,28	0,91	9,75	7,31	4,30	2,74	2,74	
25	0,33	0,83	1,28	12,19	10,97	0,33	1,18	12,19	8,54	5,18	3,66	3,66	
32	0,46	1,83	1,77	15,85	14,62	0,48	1,53	15,85	11,88	7,00	4,88	4,88	
40	0,55	1,41	2,04	19,20	17,07	0,55	1,83	19,20	13,72	7,92	5,79	5,79	
50	0,70	4,52	2,68	25,00	19,81	0,70	2,13	25,00	17,68	10,36	7,26	7,26	
65	0,85	3,62	3,10	28,95	26,80	0,85	2,75	28,95	21,38	-	-	-	
80	1,03	3,09	3,95	36,60	32,00	1,03	3,50	36,60	25,90	-	-	-	
100	-	-	5,18	45,70	42,65	1,30	4,50	45,70	-	-	-	-	
125	-	-	-	-	54,80	1,70	-	-	-	-	-	-	
150	-	-	-	-	64,00	2,00	-	-	-	-	-	-	
200	-	-	-	-	-	2,75	-	-	-	-	-	-	

Nominal	Saída da Tubulação
Diâmetro Nominal	
1/2	0,4
1/2 3/4	0,5
1	0,7
11/4	0,9
11/2	10
2	1,5
21/2	1,9
3	2,2
4	3,2
5	4,0
6	5,0

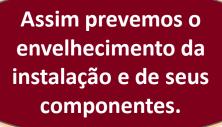
Equivalência da Perda de Carga das Conexões TUPY BSP $H_{p_2} = f_{2} \times \frac{(36+46,96)}{0,0525} \times \frac{19.6}{19.6}$ em Metros de Tubos de Aço Galvanizados


$$H_{p_{2"}} = f_{2"} \times 17121188, 2 \times Q^2$$

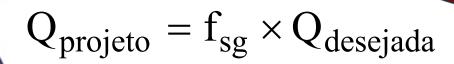
NOMINAL	1/4	3/3	1/5	2	² / ₄	1	11/4	11/	2	2	21/2	3	4			6
			0,2	27 0),41	0,55	0,68	0,8	2 (1	,04	1,37	1,64	2,18			
	0,01	0,01	0,0	1 0),01	0,01	0,01	0,0	1 0	,01	0,01	0,01	0,01			
DIÂMETRO NOMINAL	³ /s X ¹ / ₄	1/2 X 1/4	1/2 X ³ /8	3/4 X 1/4	³ /4 X ³ /8	³ /4 X ¹ /2	1 x ³/s	1 x ¹ /2	1 x ³ / ₄	1 ¹ /4 X ¹ /2	1 ¹ /4 X ³ /4	11/4 X 1	1 ¹ / ₂ x ¹ / ₂	1 ¹ / ₂ x ³ / ₄	1 ¹ / ₂ x 1	1 ¹ / ₂ x 1 ¹ / ₄
DIÂM NOM	2 x ¹ / ₂	2 x ³ /4	2 x 1	2 x 1 ¹ / ₄	2 x 1 ¹ / ₂	2½ x 1	2 ¹ /2 x 1 ¹ /4	2 ¹ /2 x 1 ¹ /2	2 ¹ / ₂ x 2	3 x 1	3 x 1 ¹ / ₄	3 x 1½	3 x 2	3 x 2 ¹ / ₂	4 x 2	4 x 3
尺	0,11	0,18	0,18		0,26	0,32	0,30	0,32	0,29	0,33	0,43	0,16		0,53	0,27	0,12
			0,30	0,35	0,38		0,44	0,48	0,64			0,71	0,70	0,71		

Voltar as etapas do projeto!

A equação da CCI para o exercício proposto é representada pela equação:



 $H_{s} = 38 + 10834, 9 \times Q^{2} + f_{3"} \times 921415, 3 \times Q^{2} + f_{2.5"} \times 732069, 98 \times Q^{2} + f_{2"} \times 17121188, 2 \times Q^{2}$

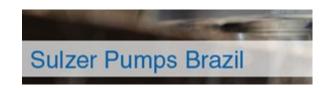


Voltar as etapas do projeto!

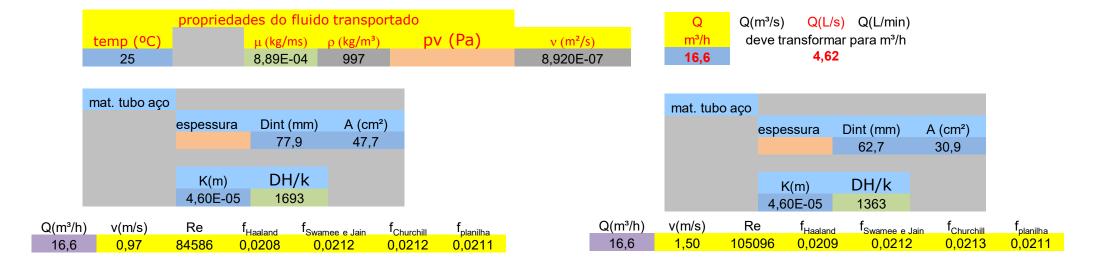
Obtemos a vazão de projeto multiplicando a vazão desejada por um fator de segurança (f_{sg})

O f_{sg} é no mínimo 1,1 e se possível não superior a 1,2

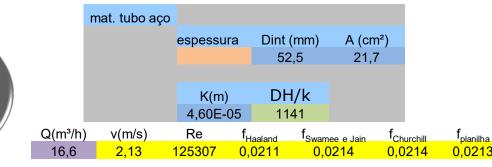
$$Q_{\text{projeto}} = 1,1 \times 4, 2 = 4,62 \frac{L}{s}$$


Nota: pelo fato de ser a mais usada, estaremos considerando a escolha de uma bomba centrífuga neste CURSO - PROJETO DE UMA INSTALAÇÃO DE BOMBEAMENTO BÁSICA

53. Para a instalação anterior escolha a bomba e especifique o seu ponto de trabalho.
Iniciamos escolhendo o fabricante da bomba.



http://www.escoladavida.eng.br/mecfluquimica/planejamento_12015/exemplos_ccb9.htm



$H_{S} = 38 + 10834, 9 \times Q^{2} + f_{3"} \times 921415, 3 \times Q^{2} + f_{2,5"} \times 732069, 98 \times Q^{2} + f_{2"} \times 17121188, 2 \times Q^{2}$

Para sua escolha, com a Q_{projeto} (4,62 L/s) na equação da CCI nós calculamos o H_{Bprojeto}

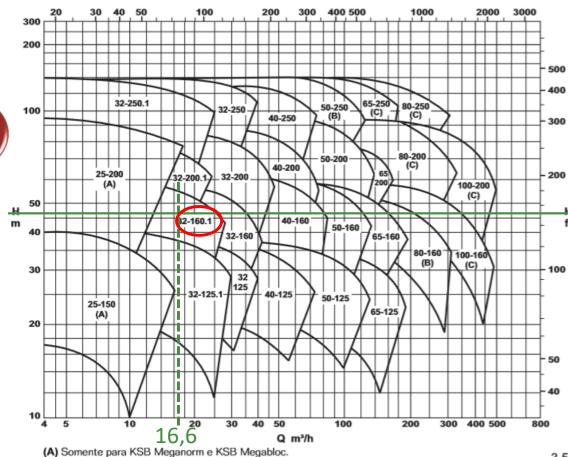
$$\begin{aligned} H_{B_{\text{projeto}}} &= 38 + 10834, 9 \times \left(\frac{4,62}{1000}\right)^2 + \left(0,0212 \times 921415, 3 + 0,0213 \times 732069, 98 + 0,0214 \times 17121188, 2\right) \times \left(\frac{4,62}{1000}\right)^2 \\ H_{B_{\text{projeto}}} &\cong 46,8 \text{m} \end{aligned}$$

Voltar as etapas do projeto!

Bomba Tipo Pump Type Tipo de Bomba KSB MEGANORM KSB MEGABLOC KSB MEGACHEM KSB MEGACHEM V

Campo de Aplicação Selection Charts Campo de Aplicación

Q U.S. gpm


60 Hz

Marcamos a Qprojeto e o HBprojeto no diagrama de tijolos e obtemos as bombas adequadas para o modelo escolhido.

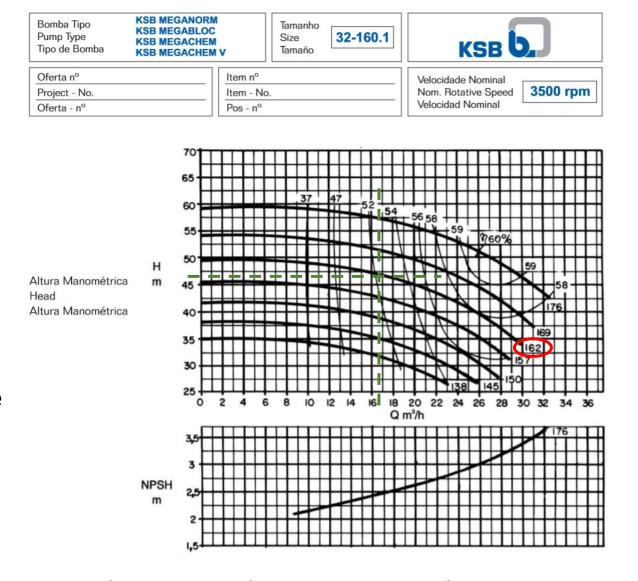
46,8

Considerando a 32-160.1 inicialmente

(B) Somente para KSB Meganorm, KSB Megachem e KSB Megachem V.

(C) Somente para KSB Meganorm e KSB Megachem.

3.500 rpm



Determinação do ponto de trabalho da bomba e do diâmetro do rotor dela.

Marcamos a vazão e a carga manométrica de projeto e já temos o provável diâmetro do rotor.

http://www.escoladavida.eng.br/mecfluquimica/planejamento_12015/exemplos_ccb9.htm

Sobre as curvas dadas pelo fabricante (CCB), traçamos a CCI e nos cruzamentos, definimos os pontos de trabalho.

$$H_S = 38 + 10834, 9 \times Q^2 + f_{3"} \times 921415, 3 \times Q^2 + f_{2.5"} \times 732069, 98 \times Q^2 + f_{2"} \times 17121188, 2 \times Q^2$$

Para a bomba com
diâmetro do rotor
162 mm,
ooderíamos estimar

0

0,0258

0,0232

Hs(m)

38,0

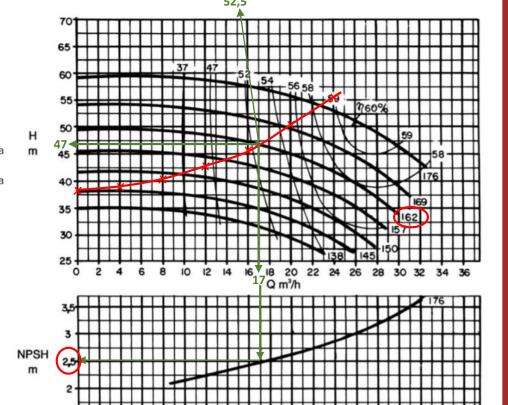
38,6

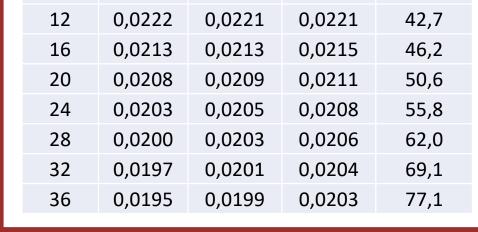
40,2

Q.	$\approx 17 \frac{\mathrm{m}^3}{1} \cong 4$	72 <u>L</u>
- (h	S

$$H_{B_{\tau}} = 47 \mathrm{m}$$

$$\eta_{B_{z}} = 52,5\%$$


Altura Manométrica Head Altura Manométrica


$$N_{\rm B} = \frac{997 \times 9,8 \times \left(\frac{17}{3600}\right) \times 47}{0,525}$$

$$N_{\rm B} \cong 4130,5W \cong 5,62CV$$

$$NPSH_{req} \approx 2.5 m$$

f2,5"

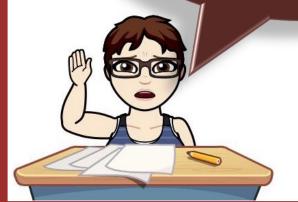
0,0263

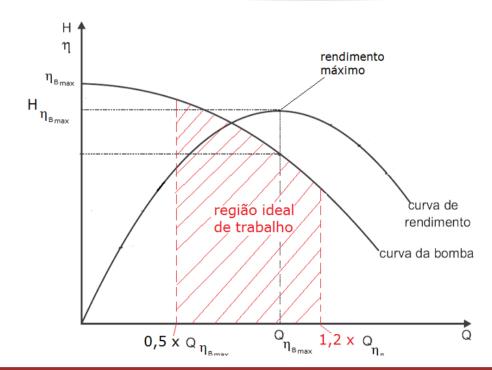
0,0233

 $Q(m^3/h)$

8

0,0271


0,0237


Com a vazão correspondente ao rendimento máximo da bomba, podemos estabelecer uma região ideal de trabalho para a bomba e que está compreendida entre 50% e 120% da vazão do rendimento máximo.

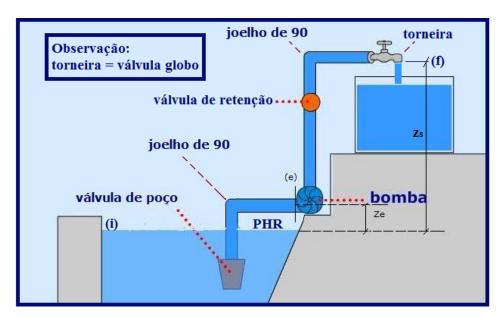
Ele recomendaria o correspondente ao rendimento máximo!

O ponto de trabalho especificado seria compatível com o recomendado pelo fabricante da bomba selecionada?

Voltar as etapas do projeto!

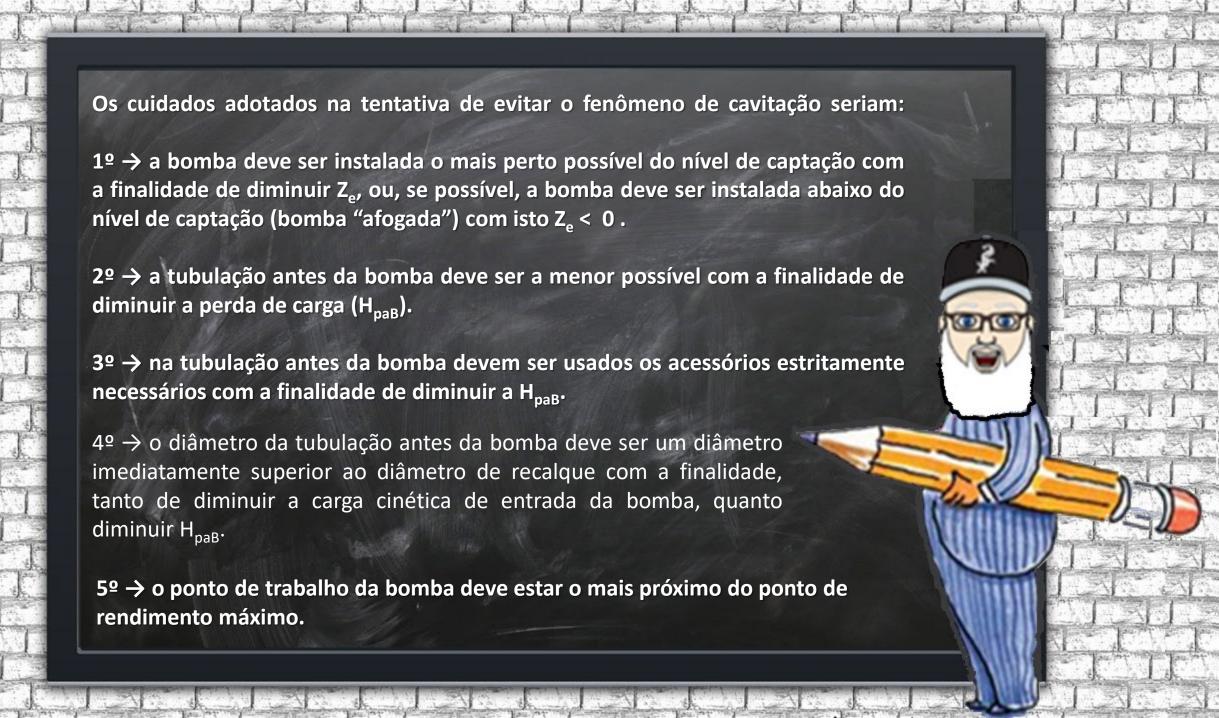
Na verdade, abaixo de 70% da vazão do rendimento máximo já ocorre o fenômeno de recirculação, porém é abaixo de 50% que este fenômeno passa a originar ruídos e danos significativos para a bomba.

E por que não abaixo de 50% da vazão do rendimento máximo e se possível não acima de 1,2 da vazão do rendimento máximo?



Com vazões acima de 120% da vazão do rendimento máximo a probabilidade de ocorrer o fenômeno de cavitação é maior!

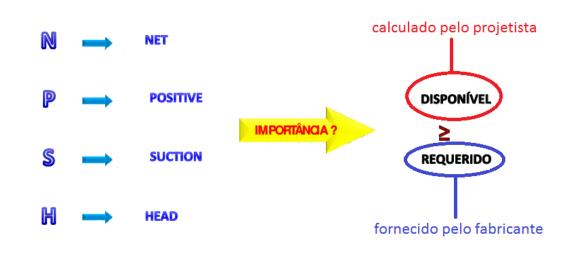
Em instalação hidráulica cavitação é o fenômeno de vaporização total, ou parcial do fluido na própria temperatura de escoamento devido estar submetido a uma pressão muito baixa e posteriormente voltar a ser líquido com o aumento da pressão, também em um processo isotérmico.


Inicialmente se imaginou que a seção de menor pressão era a seção de entrada da bomba e aí se estudou o fenômeno de cavitação, o qual foi denominado de supercavitação e este ocorre sempre que p_{eabs} for menor ou igual a pressão de vapor.

Pelo fato do fenômeno de cavitação poder comprometer todo o projeto de uma instalação de bombeamento alguns cuidados preliminares devem ser tomados para evitá-lo, cuidados estes onde objetivamos trazer a pe o mais perto possível da patm, ou até mesmo superior a ela.

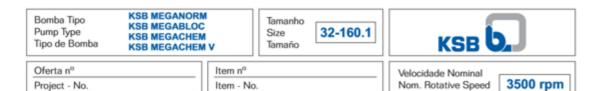
$$P_{e} = -\gamma \times \left[z_{e} + \frac{v_{e}^{2}}{2g} + f \times \frac{\left(L_{aB} + \sum Leq_{aB}\right)}{D_{H}} \times \frac{v_{e}^{2}}{2g} \right]$$

Considerando a equação acima, quais seriam os cuidados que deveriam ser adotados com objetivo de evitar a supercavitação?



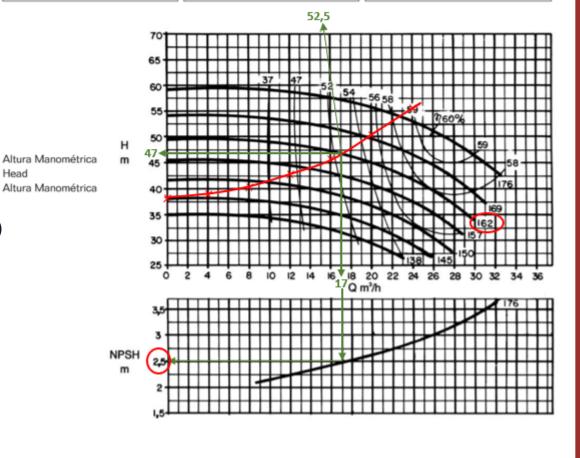
A condição para não existir a supercavitação era: p_{eabs} > p_{vapor}, porém isto só garante que não ocorre a cavitação na entrada da bomba, ela pode estar ocorrendo no interior da bomba na região de seu rotor e aí teremos que recorrer ao NPSH.

E a condição necessária e suficiente para não ocorrer a cavitação é:


$$NPSH_{requerido} = H_{e_{abs}} - \frac{p_{vapor}}{\gamma}$$

$$NPSH_{disponível} = H_{0_{abs}} - H_{p_{aB}} - \frac{p_{vapor}}{\gamma}$$

Tanto o NPSH do fabricante como o do projetista são calculados com o PHR no eixo da bomba e com a vazão de trabalho!


Mas a bomba escolhida foi a de Dr = 162 mm e o NPSHr lido para 176 mm?

Pos - nº

Oferta - nº

Head

Velocidad Nominal

$$NPSH_{requerido} = H_{e_{abs}} - \frac{p_{vapor}}{\gamma} = 2,5m$$

$$NPSH_{disponível} = H_{0_{abs}} - H_{p_{aB}} - \frac{p_{vapor}}{\gamma}$$

54. Considerando o problema que está sendo desenvolvido, verifique se a instalação em questão está sujeita ao fenômeno de cavitação.

Fiz esta pergunta para o fabricante, vamos ver o que ele me respondeu!

Prezado Raimundo, a diferença entre os valores de NHSH para os diâmetros mínimos e máximo dos rotores é muito pequena, motivo pelo qual é apresentada apenas a curva com os valores maiores.

Atenciosamente,

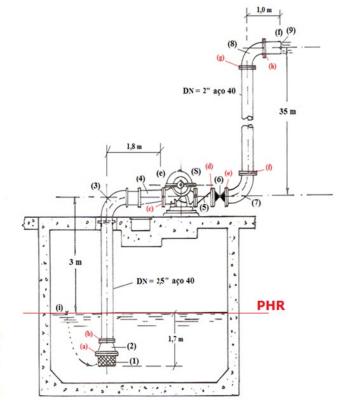
Paulo Sérgio F. de Vilhena Gerente Setorial de Vendas Distribuição -Building Service - Irrigação KSB Bombas Hidráulicas S.A. Fone: (11) 4596-8735 pvilhena@ksb.com.br

$$NPSH_{disponível} = H_{0_{abs}} - H_{p_{aB}} - \frac{p_{vapor}}{\gamma} \qquad H_{0_{abs}} = -3 + \frac{100000}{997 \times 9,8} \cong 7,2m$$

Voltar as etapas do projeto!

$$H_{p_{aB}} = H_{p_{3"}} + H_{p_{2,5"}}$$

$$H_{p_{aB}} = (0,0212 \times 921415, 3 + 0,0212 \times 732069, 98) \times \left(\frac{17}{3600}\right)^2 \cong 0,782m$$


$$NPSH_{disponível} = 7, 2-0, 782 - \frac{3166}{997 \times 9, 8} \cong 6, 1m$$

$$Reserva_{contra_cavitaç\~ao} = NPSH_{dispon\'ivel} - NPSH_{requerido}$$

Reserva
$$_{\text{contra cavitação}} = 6, 1-2, 5 = 3, 6m$$

Nenhum problema de cavitação, já que existe uma ótima reserva contra ela!

água a 25°C

$$p_{vapor_abs} = 0,03166bar = 3166Pa$$

$$p_{atm} = 1bar = 100000Pa$$

O motor que aciona a bomba deverá trabalhar sempre com uma folga ou margem de segurança a qual evitará que o mesmo venha, por uma razão qualquer, operar com sobrecarga. Portanto, recomenda-se que a potência necessária ao funcionamento da bomba (N_B) seja acrescida de uma folga, conforme especificação a seguir (para motores elétricos):

Consumo de operação sem escolher o motor elétrico, uma das maneiras mais utilizadas para acionar as bombas hidráulicas.

Potência exigida pela Bomba (N _B)	Margem de segurança recomendada (%)
até 2 CV	50
de 2 a 5 CV	30
de 5 a 10CV	20
de 10 a 20CV	15
acima de 20 CV	10

APRESENTO O PROCEDIMENTO QUE PODE SER LIDO NA PÁGINA 69 DO LIVRO BOMBAS E INSTALAÇÕES DE BOMBEAMENTO ESCRITO POR A. J. MACINTYRE E EDITADO PELA LTC EM 2008.

Para motores a óleo diesel recomenda-se uma margem de segurança de 25% e a gasolina, de 50% independente da potência calculada.

Iniciamos especificando o motor elétrico, já que temos a potência mecânica da bomba selecionada.

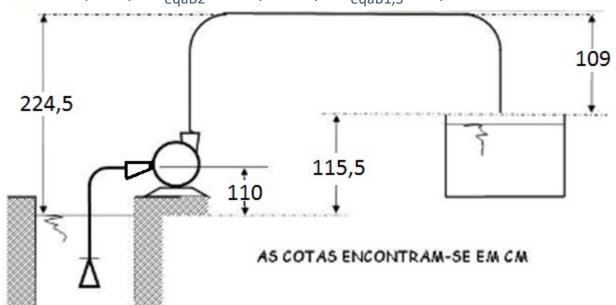
55. Considerando que a instalação em questão opera 8 h/dia e 24 dia/mês, especifique o consumo de operação mensal.

 $N_{\rm B} \cong 4130,5W \cong 5,62CV$

$$N_{\rm m} = 1, 2 \times 5, 62 \cong 6,75 {\rm CV}$$

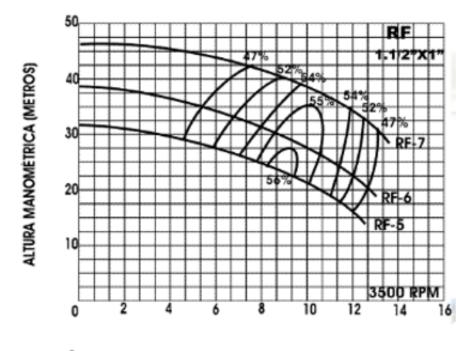
Motores comerciais:

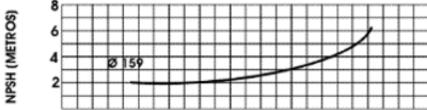
Considerando uma rede elétrica de 220 v, que é recomendada para motores de até 200 CV, tem-se: 1/2; 3/4; 1; 1,5; 2; 3; 5; 7,5; 10; 15; 20;25; 30; 40; 50; 75; 100; 125; 150 e 200 (CV).


Selecionando o motor de 7,5 CV, temos:

$$\eta_{m_{real}} = \frac{5,62}{7,5} \times 100 \cong 74,9\%$$

$$Consumo_{operação_mensal} = \frac{7,5 \times 735}{1000} \times 8 \times 24 = 1058, 4 \frac{\text{kWh}}{\text{mês}}$$


- 56. A instalação de bombeamento a seguir opera com uma bomba cujas curvas são conhecidas e dadas ao lado. Sabendo que bombeia água a 28°C, com uma vazão de trabalho de 3 L/s e que a tubulação antes da bomba (aB) tem um diâmetro nominal de 2" aço 40, pede-se:
 - a. verificar a supercavitação;
 - b. verificar a cavitação através do NPSH;
 - c. Se tiver cavitando proponha alguma solução e comprove que a mesma resolveu o problema.


Dados: leitura barométrica igual a 702 mmHg; comprimento da tubulação antes da bomba igual a 1,7 m; $\Sigma L_{egaB2''}$ = 15,05 m; $\Sigma L_{egaB1,5''}$ =0,38m

RUDC INDUSTRIA E COMERCIO LTDA

CURVA RF

57. Considere a figura e as informações a seguir: o rendimento do grupo motor-bomba é 0,8; a vazão a ser recalcada é 0,5 L/s do reservatório inferior até o reservatório superior, conforme a figura; a perda de carga total para a sucção é 0,85 m; a perda de carga total para o recalque é 2,30 m e que a carga cinética na saída é desprezível. Qual a menor potência, em CV, do motor comercial que deve ser especificado para este caso?

Dados adicionais: 1 kgf = 9,8 N

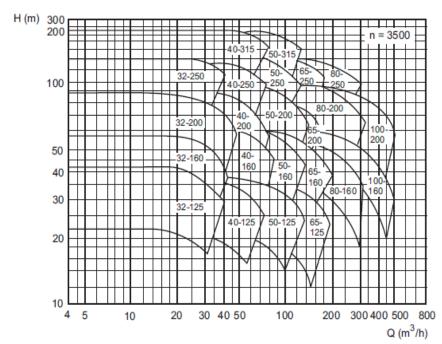
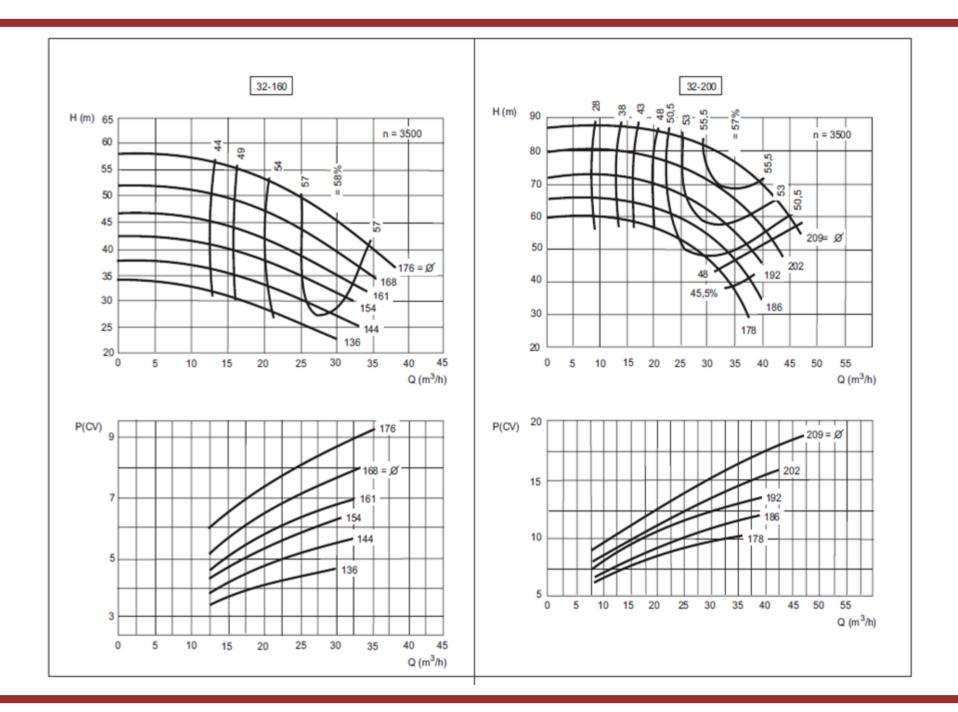
$$\rho = 1000 \frac{\text{kg}}{\text{m}^3}$$

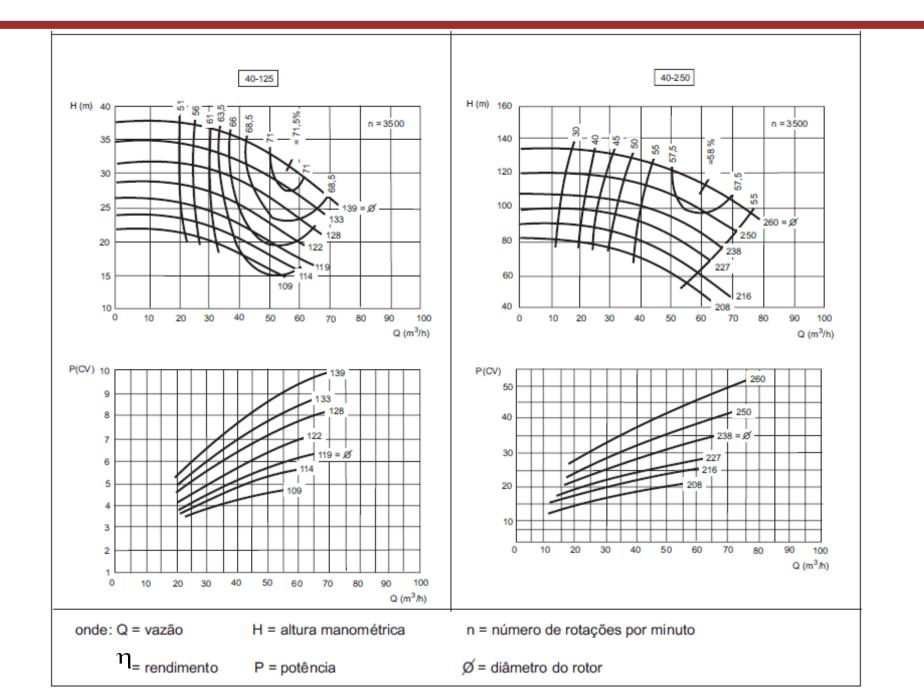
$$g = 9.8 \frac{m}{s^2}$$

Sabendo que a instalação opera 12 h/dia e 30 dia/mês, especifique o seu consumo de operação trimestral.

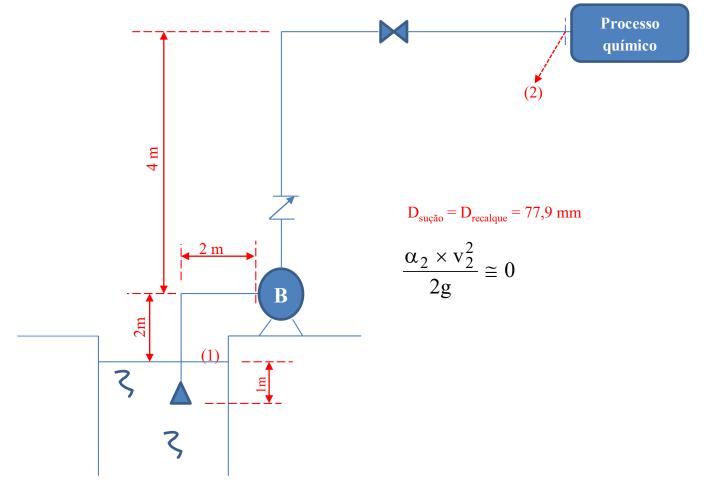
E.L. 45,80 m

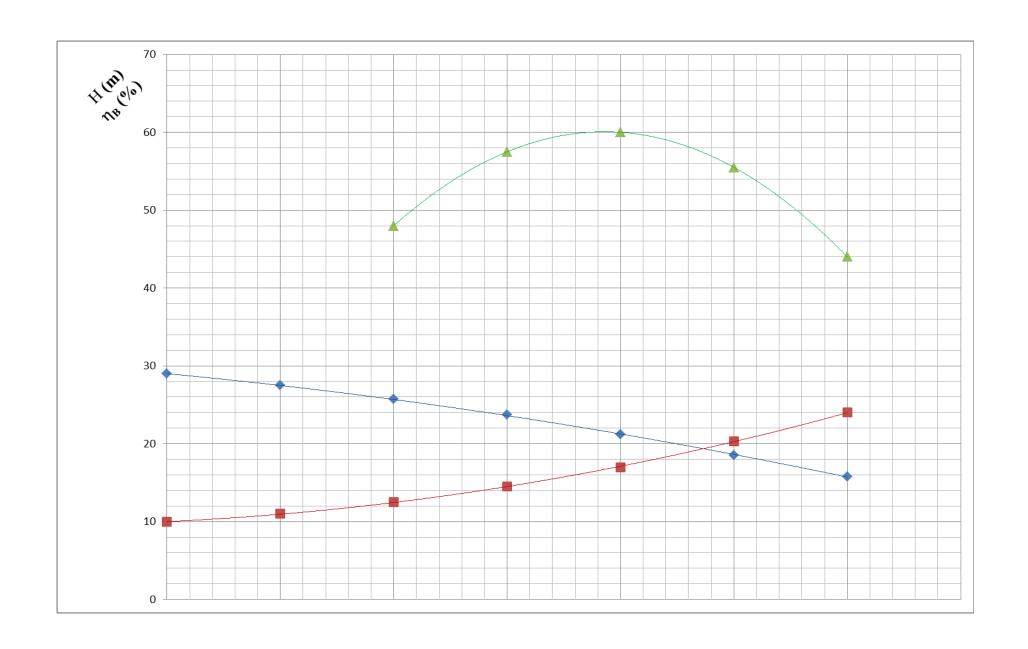
- 58- Uma instalação industrial de bombeamento tem uma vazão de projeto igual a 6,94 L/s. Sabendo que tanto a seção inicial como a final são representadas por níveis do fluido bombeado, que se encontram submetidas à pressão atmosférica local, que adotando o plano horizontal de referência no eixo da bomba à cota inicial é -2,5m e a cota final 40 m e que o fluido escoando com a vazão de projeto a perda de sução é 60% da cota inicial e que a perda no recalque é equivalente a 40% da cota final, pede-se:
 - a. selecionar a bomba através do diagrama de tijolos dado;
 - b. considerando que o fluido na situação descrita é a água a 4° C ($\rho = 1000$ kg/m³), especifique a potência útil da bomba;
 - c. para a situação descrita calcule o rendimento da bomba.

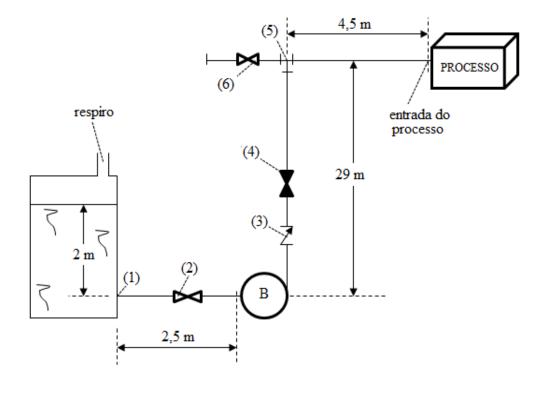




Figura 1. Gráfico de quadrículas para escolha prévia da bomba

(Adaptado do catálogo das bombas KSB).






- 59. A instalação a seguir foi projetada para alimentar um processo químico que exige uma pressão p_2 em sua entrada. No gráfico do próximo slide é representada a curva característica da instalação (CCI) e as curvas $H_B = f(Q)$ e $\eta_B = f(Q)$ da bomba que foi selecionada para o funcionamento adequado da instalação. Devido a um problema administrativo alguns dados como os valores do eixo da vazão e a rugosidade do material do tubo foram perdidos. Sabendo que o comprimento total da instalação (L + Σ leq) é igual a 125 m e que o motor elétrico tem uma potência útil de 3,7 kW, determine:
- a. a vazão de bombeamento do fluido, que no caso é a água a 20°C (ρ = 998,2 kg/m³);
- b. a perda de carga total para a vazão de trabalho;
- c. a pressão na entrada do processo (p₂);
- d. o coeficiente de perda de carga distribuída.

60 - A instalação a seguir será dimensionada para transporta um fluido com uma vazão desejada de 4,0 L/s, alimentando um processo que na sua entrada exige uma pressão 13 mca e trabalhando com tubulação de PVC rosqueada da tigre com rugosidade igual a 0,06 mm. Conhecendo as seguintes propriedades do fluido a ser bombeado: massa especifica relativa igual a 1,3 e viscosidade igual a 0,0188 Pa x s, dimensione a tubulação (diâmetro externo e espessura mínima, diâmetro interno e área da seção livre), escreva a equação da CCI em função da vazão e dos coeficientes de perda de carga distribuída, especifique a carga manométrica de projeto utilizando o fator de segurança mínimo e com os coeficientes de perda de carga distribuída calculados pela fórmula de Churchill.

Singularidade	Rep.
Entrada normal	(1)
Regis. Gaveta aberto	(2)
Valv. Retenção tipo pesada	(3)
Regis. Globo aberto	(4)
Tê 90º saída bilateral	(5)
Regis. Gaveta fechado	(6)

NÃO ESQUEÇAM
DE REVERENCIAR
AS NOVAS PERGUNTAS
ELAS CERTAMENTE
ABREM NOVOS CAMINHOS
O QUE JAMAIS OCORRE
COM AS VELHAS RESPOSTAS.

Após resolver os 5 problemas propostos, esta primeira etapa do PROJETO DE UMA INSTALAÇÃO DE BOMBEAMENTO BÁSICA pode ser considerada finalizada, desejando estudar um pouco mais o tema, aguarde o próximo módulo INSTALAÇÕES HIDRÁULICAS DE ABASTECIMENTO.

