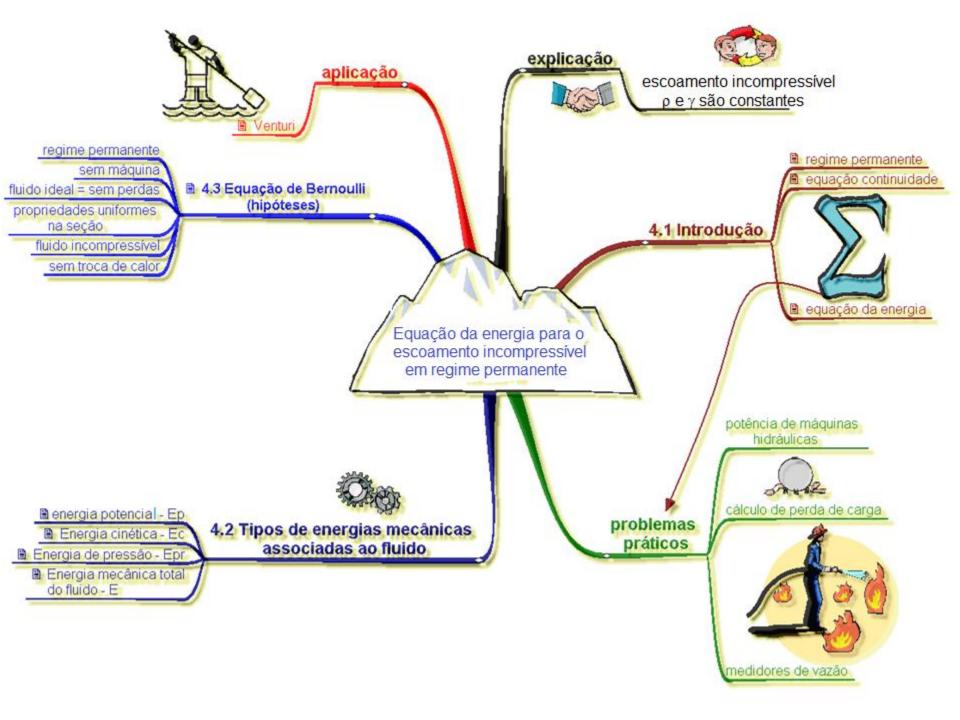
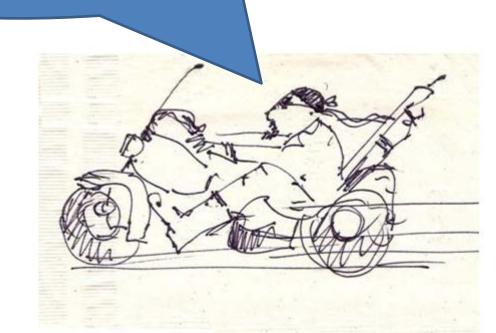
Capítulo 4 – Equação da energia para um escoamento incompressível em regime permanente

Raimundo (Alemão) Ferreira Ignácio



4.1 Introdução

No capítulo 3 fizemos um balanço de massa entre seções de um escoamento incompressível e em regime permanente, neste capítulo faremos um balanço de energias nas mesmas condições.



4.1 Introdução (cont.)

Regime permanente = as propriedades em uma dada seção do escoamento não se alteram com o decorrer do tempo, portanto, o tempo não é uma variável do estudo proposto nesta condição, além disto, tendo reservatório no estudo, o nível do fluido no mesmo permanece constante na condição de escoamento em regime permanente.

4.1 Introdução (cont.)

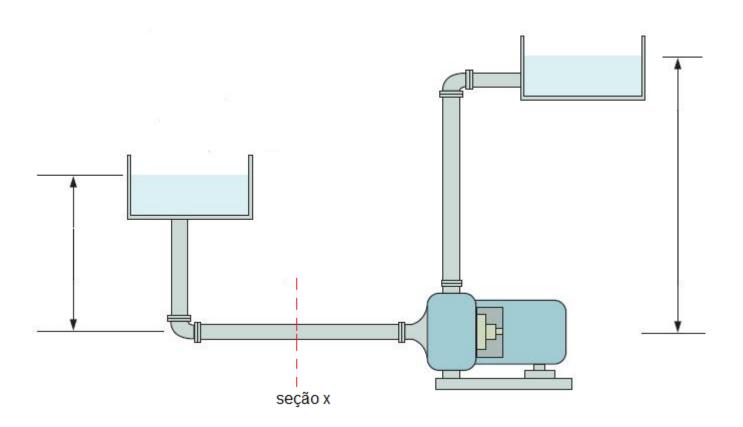
Na equação da continuidade se efetua um balanço do fluxo de massa no "sistema" estudado

$$\sum_{m} Q_{m} = \sum_{m} Q_{m}$$
entram saem

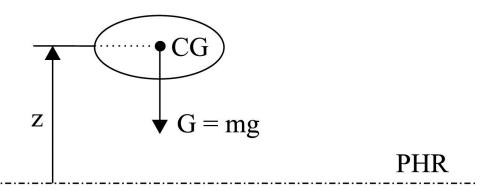
4.1 Introdução (cont.)

Equação da energia possibilita a realização de um balanço de energias entre duas seções de um tubo de corrente, ou seja de um sistema aberto formado exclusivamente de fluido.

4.2 Tipos de energias mecânicas associadas ao fluido

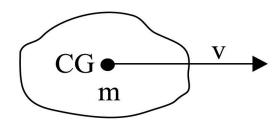


Energia potencial



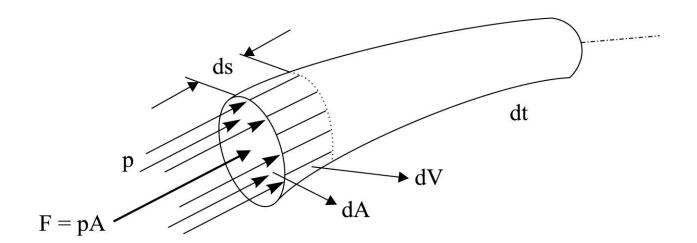
$$E_p = mgz$$

Energia cinética



$$E_{c} = \frac{mv^{2}}{2}$$

Energia de pressão

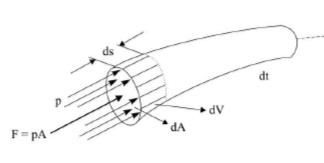


$$dw = Fds = pAds = pdV$$

$$dw = dE_{pr}$$

$$dE_{pr} = pdV :: E_{pr} = \int_{V} pdV$$

Resumindo:



EUIRP = escoamento

incompressível

regime permanente

Energias mecânicas observadas em uma

seção do EUIRP

23/09/2009 - v2

 $E_p = mgz$

energia potencial de posição

energia de pressão

$$E_{pr} = \int_{V} pdV$$

 $E_{c} = \frac{m \times v^{2}}{2}$

energia cinética

Portanto a energia mecânica total do fluido em uma seção do escoamento unidirecional, incompressível e em regime permanente:

$$E = E_p + E_c + E_{pr}$$

$$E = mgz + \frac{mv^2}{2} + \int_{V} pdV$$

Considerando a pressão constante na seção, temos:

$$E = mgz + \frac{mv^2}{2} + pV = mgz + \frac{mv^2}{2} + p\frac{G}{\gamma}$$

Trabalhando no SI

$$[E] = [mgz] + \left[\frac{mv^2}{2}\right] + \left[p\frac{G}{\gamma}\right]$$

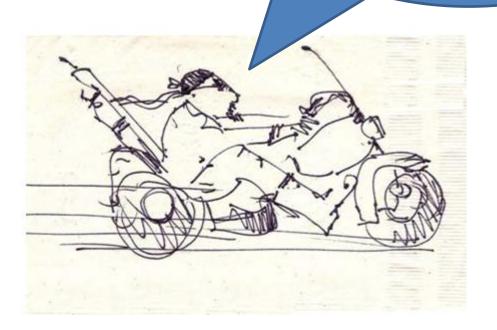
$$[E] = J$$

$$[mgz] = J$$

$$\left\lceil \frac{mv^2}{2} \right\rceil = J$$

$$\left\lceil p \frac{G}{\gamma} \right\rceil = J$$

Para eliminar a dificuldade de visualização anterior, iremos considerar a energia por unidade de peso e isto define o que denominamos de carga total (H), carga potencial, carga cinética e carga de pressão, respectivamente, onde a unidade será uma unidade de comprimento.



$$\frac{E}{G} = \frac{mgz}{G} + \frac{\frac{mv^2}{2}}{G} + \frac{p\frac{G}{\gamma}}{G}$$

$$H = z + \frac{v^2}{2g} + \frac{p}{\gamma}$$

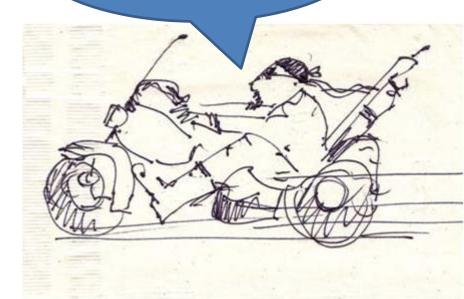
regime permanente
sem máquina
fluido ideal = sem perdas
propriedades uniformes
na seção
fluido incompressível

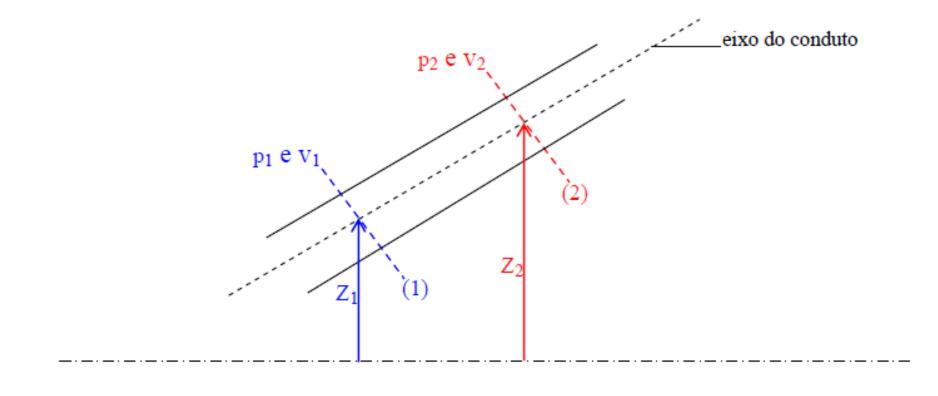
sem troca de calor

4.3 Equação de Bernoulli (hipóteses)

Com todas estas hipóteses teremos:

 $H_{inicial} = H_{final}$





$$z_{inicial} + \frac{p_{inicial}}{\gamma} + \frac{v_{inicial}^2}{2g} = z_{final} + \frac{p_{final}}{\gamma} + \frac{v_{final}^2}{2g}$$

Aplicação

Imagens e informação extraídas dos sítios: http://es.wikipedia.org/wiki/Efecto Venturi

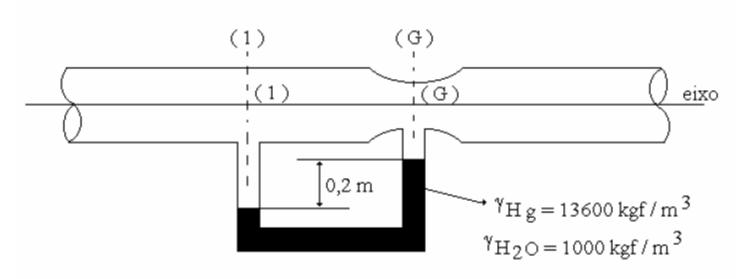
http://www.ituflux.com.br

normalizados segundo a NBR ISO 5167-1 (ABNT, 1994)

Giovanni Battista Venturi, (1746–1822)

Em uma instalação hidráulica instalou-se um medidor de vazão do tipo Venturi para estimar a vazão de escoamento da água na instalação. Sabendo-se que Ø máx. do Venturi é igual a 20 mm, Ø garg do Venturi é igual 10 mm. Desnível do mercúrio no manometro diferencial 20 cm e que o coeficiente de vazão do venturi e 0,95 pede-se:

- a) a diferença de pressão entre a área máx. e a garganta
- b) a vazão teórica no venturi
- c) a vazão real do escoamento.



RESPOSTAS: $p_1 - p_G = 2.520 \text{ kgf/m}^2$; $Q_t = 5.76 \times 10^{-4} \text{ m}^3/\text{s} \text{ e } Q_R = 5.47 \times 10^{-4} \text{ m}^3/\text{s}$