
Capítulo 4 – Equação da energia para um escoamento incompressível em regime permanente (cont.)

Raimundo (Alemão) Ferreira Ignácio

Para a instalação hidráulica esquematizada a seguir, sabendo que a tubulação é de aço de espessura 40 de $D_{nominal} = 3$ " ($D_{int} = 77.9 \text{ mm e A} = 47.7 \text{ cm}^2$) e que a perda de carga entre as seções (0) e (2) é igual a 1,4 m, pede-se determinar a vazão de escoamento.

Já que conhecemos o sentido do escoamento, podemos escrever a equação da energia:

$$H_{inicial} = H_{final} + Hp_{i-f}$$

$$z_i + \frac{p_i}{\gamma} + \frac{v_i^2}{2g} = z_f + \frac{p_f}{\gamma} + \frac{v_f^2}{2g} + Hp_{i-f}$$

Para o exercício:

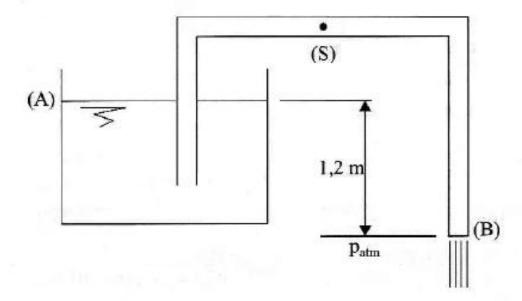
$$z_0 + \frac{p_0}{\gamma} + \frac{v_0^2}{2g} = z_2 + \frac{p_2}{\gamma} + \frac{v_2^2}{2g} + Hp_{0-2}$$

Devemos adotar um PHR

PHR = Plano Horizontal de Referência

The said the

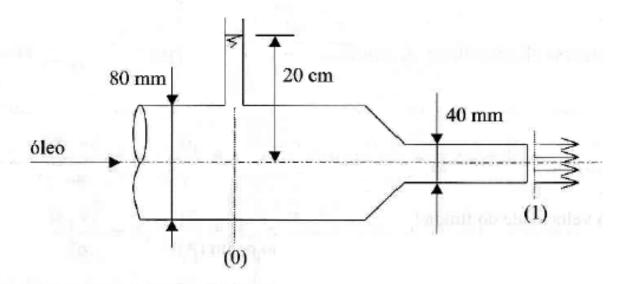
Adotando O PHR no eixo da tubulação que passa na seção (2) e trabalhando na escala efetiva ($p_{atm} = 0$)


$$2 = \frac{v_2^2}{19.6} + 1.4 \Rightarrow v_2 = \sqrt{19.6 \times (2 - 1.4)} \cong 3.43 \frac{\text{m}}{\text{s}}$$

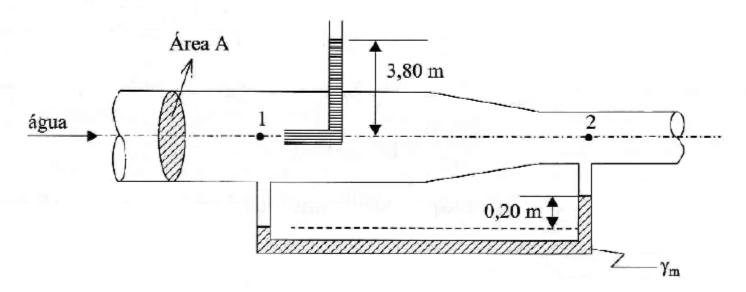
$$Q = v \times A = 3.43 \times 47,7 \times 10^{-4} = 0,0164 \frac{m^3}{s} = 16,4 \frac{L}{s}$$

Exercícios

- 4.3 A pressão no ponto S do sifão da figura não deve cair abaixo de 25 kPa (abs). Desprezando as perdas, determinar:
 - a) Qual é a velocidade do fluido?
 - b) Qual é a máxima altura do ponto S em relação ao ponto (A)?


$$p_{atm} = 100 \text{ kPa}; \ \gamma = 10^4 \text{ N/m}^3$$

Resp.: a) 4,9 m/s; b) z = 6,3 m


4.5 Quais são as vazões de óleo em massa e em peso no tubo convergente da figura, para elevar uma coluna de 20 cm de óleo no ponto (0)?

Dados: desprezar as perdas; $\gamma_{\text{tiles}} = 8.000 \text{ N/m}^3$; $g = 10 \text{ m/s}^2$

Resp.: $Q_m = 2.1 \text{ kg/s}$; $Q_G = 21 \text{ N/s}$

4.6 Dado o dispositivo da figura, calcular a vazão do escoamento da água no conduto. Dados: $\gamma_{\rm H_20} = 10^4 \, \text{N/m}^3; \gamma_{\rm m} = 6 \times 10^4 \, \text{N/m}^3; \; p_2 = 20 \, \text{kPa}; \; A = 10^{-2} \, \text{m}^2; g = 10 \, \text{m/s}^2$. Desprezar as perdas e considerar o diagrama de velocidades uniforme.

