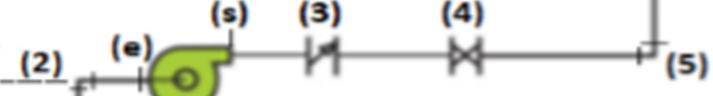

METODOLOGIA APLICADA PARA RESOLVER UM PROBLEMA


EXEMPLO DE APLICAÇÃO Á HIDRÁULICA

1º Questão: Considere a instalação e as informações a seguir: a água bombeada está a 30°C, a vazão desejada é 1,5 L/s e a instalação foi projetada para serviços gerais adotando uma velocidade econômica de 1,5 m/s e um único diâmetro de aço 80 para a instalação. Para o cálculo da perda de carga para toda instalação adotou-se um coeficiente de perda de carga médio igual a 0,028. Considerando um fator de segurança igual a 1,5, calcule a pressão na entrada da bomba, a carga manométrica da mesma e a sua potência hidráulica.

Tubulações de *aço 80*

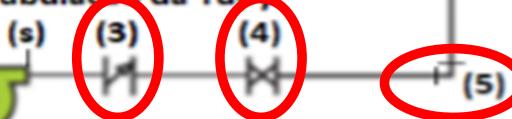
- (1) válvula de poço da Mipel
- (2), (5) e (6) curva fêmea de 90 graus da Tupy
- (3) válvula de retenção horizontal da Mipel
- (4) válvula globo reta sem guia da Mipel
- (7) saída da tubulação da Tupy

4 m PHR

Comprimento da tubulação de sução = 8m

(1) Comprimento da tubulação de recalque = 68 m

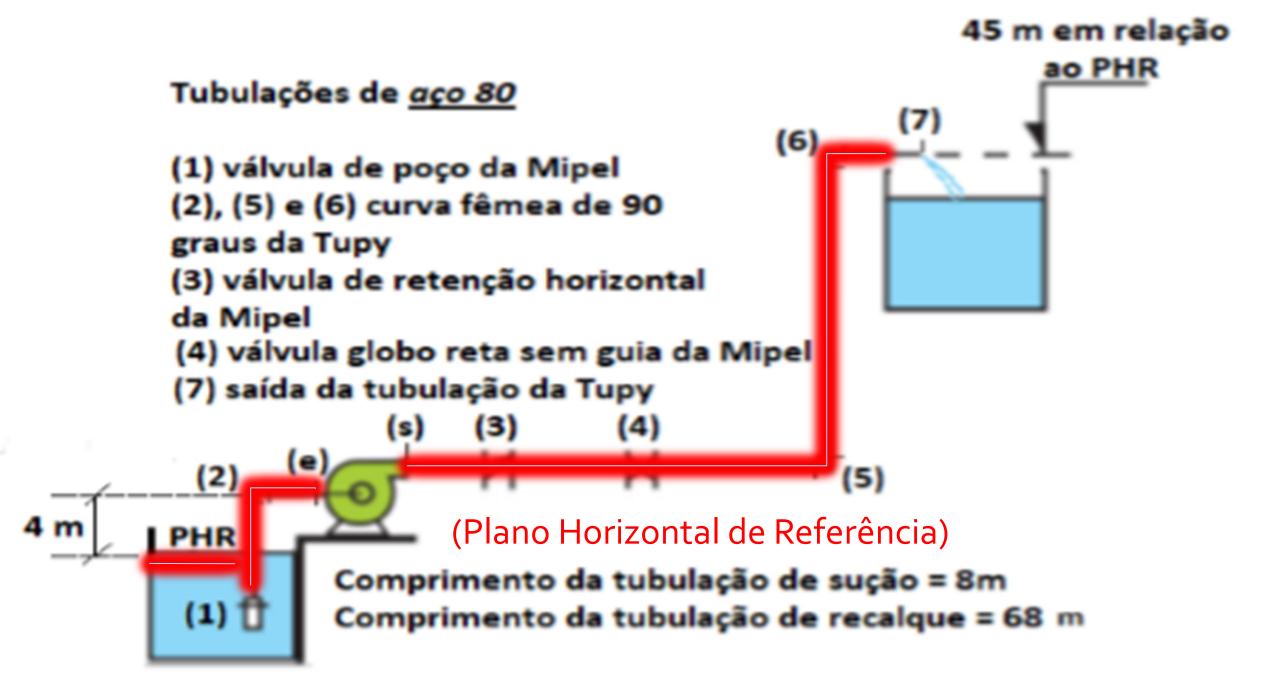
(6)


DADOS:

• 1° Questão: Considere a instalação e as informações a seguir: a água bombeada está a 30°C, a vazão desejada é 1,5 L/s e a instalação foi projetada para serviços gerais adotando uma velocidade econômica de 1,5 m/s e um único diâmetro de aço 8o para a instalação. Para o cálculo da perda de carga para toda instalação adotou-se um coeficiente de perda de carga médio igual a 0,028. Considerando um fator de segurança igual a 1,5, calcule a pressão na entrada da bomba, a carga manométrica da mesma e a sua potência hidráulica.

45 m em relação ao PHR

Tubulações de *aço 80*


- (1) válvula de poço da Mipel
- (2), (5) e (6) curva fêmea de 90 graus da Tupy
- (3) válvula de retenção horizontal da Mipel
- (4) válvula globo reta sem guia da Mipel
- (7) saída da tubulação da Tupy

(6)

Comprimento da tubulação de sução = 8m

Comprimento da tubulação de recalque = 68 m

Dados:

- Fluido: água a 30°c
- Vazão desejada: 1,5 l/s
- Velocidade econômica do fluído: 1,5 m/s
- Coeficiente de perda de carga: 0,028
- Fator de segurança: 1,5
- PHR no nível do reservatório de captação
- Eixo da bomba á 4 m acima do PHR
- Saída da tubulação a 45 M em relação ao PHR
- Tubulação aço 8o com único diâmetro
- Comprimento da tubulação de sucção = 8m
- Comprimento da tubulação de recalque = 68m
- 1 Válvula de poço da Mipel
- 2, 5 e 6 Curva fêmea de 90° da Tupy
- 3 Válvula de retenção horizontal da Mipel
- 4 Válvula Globo reta sem guia da Mipel
- 📍 7 Saída de tubulação da Tupy

O que o exercício está pedindo para calcular?

• 1° Questão: Considere a instalação e as informações a seguir: a água bombeada está a 30°C, a vazão desejada é 1,5 L/s e a instalação foi projetada para serviços gerais adotando uma velocidade econômica de 1,5 m/s e um único diâmetro de aço 80 para a instalação. Para o cálculo da perda de carga para toda instalação adotou-se um coeficiente de perda de carga médio igual a 0,028. Considerando um fator de segurança igual a 1,5, calcule a pressão na entrada da bomba, a carga manométrica da mesma e a sua potência hidráulica.

O que o exercício está pedindo para calcular?

- Pressão na entrada da bomba?
- Carga manométrica?
- Potência hidráulica?

EQUAÇÕES:

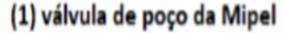
Pressão na entrada da bomba?

$$H_{i} = z_{e} + \frac{p_{e}}{\gamma} + \frac{v^{2}}{2g} + HP_{ab}$$

Carga manométrica?

$$H_i + H_B = H_f + HP_{ab} + HP_{rec}$$

Potência hidráulica?

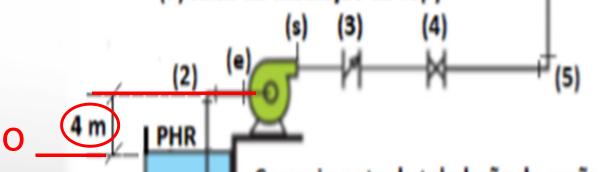

$$N = \gamma \times Q \times H_B$$

Pressão na entrada da bomba?

$$H_i = Z_e + \frac{p_e}{\gamma} + \frac{v^2}{2g} + HP_{ab}$$

$$0 = 4 + \frac{p_e}{\gamma} + \frac{v^2}{2 \times 9.8} + HP_{ab}$$

Tubulações de *aço 80*


(2), (5) e (6) curva fêmea de 90 graus da Tupy

(3) válvula de retenção horizontal

da Mipel

(4) válvula globo reta sem guia da Mipel

(7) saída da tubulação da Tupy

Comprimento da tubulação de sução = 8m Comprimento da tubulação de recalque = 68 m

45 m em relação

ao PHR

Pressão na entrada da bomba?

$$H_{i} = z_{e} + \frac{p_{e}}{\gamma} + \frac{v^{2}}{2g} + HP_{ab}$$

$$0 = 4 + \frac{p_{e}}{\gamma} + \frac{v^{2}}{2 \times 9,8} + HP_{ab}$$

$$\gamma = \rho \times g$$

$$\rho = 1000,14 + 0,0094 \times t - 0,0053 \times t^{2}$$
$$[\rho] = \frac{kg}{m^{3}}; [t] = {}^{0}C$$

$$\rho = 1000,14 + 0,0094 \times 30 - 0,0053 \times 30^{2}$$
$$[\rho] = 995,652 \frac{kg}{m^{3}}$$

$$\gamma = 995,7 \times 9,8$$

$$\gamma = 9365,86 \frac{N}{m^3}$$

- http://www.escoladavida.eng.br/index.htm
- CAMINHO:
 - 1. NA ENGENHARIA
 - 2. Hidráulica 1 na Eng. Civil
 - Consultas
 - 4. Obtenção das propriedades do mercúrio e d'água em função da temperatura.

θ	$\rho_{\rm w}$	ρ_{H_2}		
		ν_{w}		
		* 106		
[°C]	$[kg/m^3]$	[m ² /s]	[kg/m ³]	
2 1	998,0	0,980	13543	
22	997,8	0,957	13541	
23	997,5	0,934	13538	
2 4	997,3	0,913	13536	
25	997,0	0,892	13534	
26	996,8	0,873	13531	
	996,5	0,854	13529	
28	996,2	0,835	13526	
29	995,9	0,817	13524	
30	995,7	0,800	13521	
31	995,3	0,784	13519	
32	995,0	0,768	13516	
33	994,7	0,753	13514	
34	994,4	0,738	13511	
35	994,0	0,723	13509	
36	993,7	0,709	13507	
37	993,3	0,696	13504	
38	993,0	0,683	13502	
39	992,6	0,670	13499	
40	992,2	0,658	13497	

• Pressão na entrada da bomba?

$$H_{i} = z_{e} + \frac{p_{e}}{\gamma} + \frac{v^{2}}{2g} + HP_{ab}$$

$$0 = 4 + \frac{p_{e}}{9365,86} + \frac{v^{2}}{2 \times 9,8} + HP_{ab}$$

$$Q = v \times A$$

$$v = Q$$

 $Q_{\text{(vazão desejada)}} = V_{\text{(velocidade econômica)}} \times A$

$$1,5 \times 10^{-3} = 1,5 \times \frac{\pi \times D^2}{4}$$

=> D(diâmetro de referência) = 0,03568 m

$$D$$
(diâmetro de referência) = 0,03568 $m = > 35,68$ mm

Norma - ANSI B₃6.10 e especificação da tubulação.

$$D = 38,1 \ mm = 0,0381 m$$

$$A = 11.4 cm^2 = 11.4 \times 10^{-4} m^2$$

$$\mathbf{A} = \frac{\pi \, x \, D^2}{4}$$

$$A = \frac{\pi \times 38,1^2}{4} = 1140,092 \text{ mm}^2 = > 11,4 \text{ cm}^2$$

iâmetro	Designação
ominal	de
(pot)	espessura.
iâmetro	
xterno (mm)	(v. Nota 2)
1/4	10S
74	Std. 40, 40S
	XS, 80, 80S
13,7	
1/8	105
-	Std, 40, 40S XS, 80, 80S
	123, 53, 535
17,1	C-1 40 40C
1/2	Std, 40, 40S XS, 80, 80S
-	160
21	XXS
3/4	Std, 40, 40S
-	XS, 80, 80S 160
	XXX
27	0.1.40.400
1	Std, 40, 40S XS, 80, 80S
-	160
33	XXS
11/4	Std. 40, 40S
174	XS, 80, 80S
	160
	XXX
42	
1½	Std, 40, 40S XS, 80, 80S
=	
48	XXXS
2	Std. 40, 40S
_	XS, 80, 80S
	160 XXS
60	AAS
21/2	Std, 40, 40S
	XS, 80, 80S

de parede

(mm)

(v. Nota 3)

2,23

1,65 2,31

3.20

2,77 3,73

3,91 5,54

6,35

6,35

3,68

5,54

49,2 42,9

interno

seção

meta (cm²

7,14

5,15 6,89

9,22 12,2

9,53

• Pressão na entrada da bomba?

$$H_{i} = z_{e} + \frac{p_{e}}{\gamma} + \frac{v^{2}}{2g} + HP_{ab}$$

$$0 = 4 + \frac{p_{e}}{9365,86} + \frac{v^{2}}{2 \times 9,8} + HP_{ab}$$

$$Q = v \times A$$

$$V = \frac{Q}{A}$$

$$V = \frac{2,25 \times 10^{-3}}{4} = > 1,974 \,\text{m}^3/\text{s}$$

$$1,5 \times 10^{-3} = 1,5 \times \frac{\pi \times D^2}{4}$$

=> D(diâmetro de referência) = 0,03568 m

$$A = 11.4 cm^2 = 11.4 \times 10^{-4} m^2$$

Q = Vazão desejada x fator de segurança $Q = 1,5x1,5 = \mathbf{2},\mathbf{25}\ \boldsymbol{l/s}$

Pressão na entrada da bomba?

$$H_{i} = z_{e} + \frac{p_{e}}{\gamma} + \frac{v^{2}}{2g} + HP_{ab}$$

$$0 = 4 + \frac{p_{e}}{9365,86} + \frac{1,974^{2}}{2 \times 9,8} + HP_{ab}$$

$$HP_{ab} = f \times \frac{\left(L + \sum L_{eq}\right)}{D_H} \times \frac{Q^2}{2g}$$

$$HP_{ab} = 0.028 \times \frac{\left(8 + \sum L_{eq}\right)}{0.0381} \times \frac{(2.25 \times 10^{-3})^2}{2 \times 9.8}$$

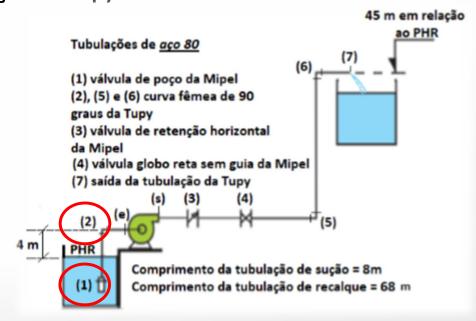
- 1 Válvula de poço da Mipel = 17,07m
- 2, 5 e 6 Curva fêmea de 90° da Tupy = 0,82m
- 3 Válvula de retenção horizontal da Mipel = 19,20m
- 4 Válvula Globo reta sem guia da Mipel = 13,72m
- 7 Saída de tubulação da Tupy = 1m

Catálogo da Tupy:

Comprimentos Equivalentes em metros para Bocais e Válvulas

	a a	Saída da	Entrada Entrada	Entrada	Válvulas	Válvulas	Válvulas	Válvula de	Válvula de Rete	
n	Vomin	Tubulação	Normal	de borda	de Gaveta	de Globo Aberto	de Ångulo Aberto	Pé e Crivo Aberto	Horizontal	Ve
	Diâmetro Nominal		₩						₫	5
	1/2	0,4	0,2	0,4	0,1	4,9	2,6	3,6	1,1	
	3/4	0,5	0,2	0,5	0,1	6,7	3,6	5,6	1,6	
	1	0,7	0,3	0,7	0,2	8,2	4,6	7,3	2,1	
	11/4	0,9	0,4	0,9	0,2	11,3	5,6	10,0	2,7	
	11/2	1,0	0,5	1,0	0,3	13,4	6,7	11,6	3,2	
	2	1,5	0,7	1,5	0,4	17,4	8,5	14,0	4,2	
	21/2	1,9	0,9	1,9	0,4	21,0	10,0	17,0	5,2	
	3	2,2	1,1	2,2	0,5	26,0	13,0	20,0	6,3	
	4	3,2	1,6	3,2	0,7	34,0	17,0	23,0	8,4	
	5	4,0	2,0	4,0	0,9	43,0	21,0	30,0	10,4	
	6	5,0	2,5	5,0	1,1	51,0	26,0	39,0	12,5	1

• Pressão na entrada da bomba?


$$H_{i} = z_{e} + \frac{p_{e}}{\gamma} + \frac{v^{2}}{2g} + HP_{ab}$$

$$0 = 4 + \frac{p_{e}}{9365,86} + \frac{1,974^{2}}{2 \times 9,8} + HP_{ab}$$

$$HP_{ab} = f \times \frac{\left(L + \sum L_{eq}\right)}{D_H} \times \frac{Q^2}{2g}$$

Comprimento da tubulação de sucção = 8m Comprimento da tubulação de recalque = 68m

- 1 Válvula de poço da Mipel = 17,07m
- 2, 5 e 6 Curva fêmea de 90° da Tupy = 0,82m
- 3 Válvula de retenção horizontal da Mipel = 19,20m
- 4 Válvula Globo reta sem guia da Mipel = 13,72m
- 7 Saída de tubulação da Tupy = 1m

$$HP_{ab} = 0.028 \times \frac{(8 + 17,07 + 0.82)}{0.0381} \times \frac{(2.25 \times 10^{-3})^2}{2 \times 9.8} = > HP_{ab} = 3.782 m$$

Pressão na entrada da bomba?

$$H_{i} = z_{e} + \frac{p_{e}}{\gamma} + \frac{v^{2}}{2g} + HP_{ab}$$

$$0 = 4 + \frac{p_{e}}{9365,86} + \frac{1,974^{2}}{2 \times 9,8} + 3,782$$

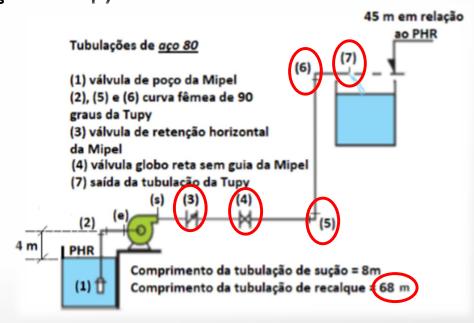
$$Pe = -77.875,63 N/m^2$$

Nesta questão não desprezei a

carga

cinética

Carga manométrica?


$$H_i + H_B = H_f + HP_{ab} + HP_{rec}$$

$$0 + H_B = 45 + 3,782 + HP_{rec}$$

$$HP_{rec} = f \times \frac{\left(L + \sum L_{eq}\right)}{D_H} \times \frac{Q^2}{2g}$$

Comprimento da tubulação de sucção = 8m Comprimento da tubulação de recalque = 68m

- 1 Válvula de poço da Mipel = 17,07m
- 2, 5 e 6 Curva fêmea de 90° da Tupy = 0,82m
- 3 Válvula de retenção horizontal da Mipel = 19,20m
- 4 Válvula Globo reta sem guia da Mipel = 13,72m
- 7 Saída de tubulação da Tupy = 1m

$$HP_{ab} = 0.028 \times \frac{(68 + 35,56)}{0.0381} \times \frac{(2.25 \times 10^{-3})^2}{2 \times 9.8} > HP_{rec} = 15,12601 m$$

Carga manométrica?

$$H_i + H_B = H_f + HP_{ab} + HP_{rec}$$

 $0 + H_B = 45 + 3,782 + 15,13$

 $H_B = 63,908 \, m$ pequena diferença pelo fato de NÃO TER CONSIDERADO O 1,9742/19,6

Potência hidráulica?

$$N = \gamma \times Q \times H_B$$

 $N = 9365,86 \times 2,25 \times 10^{-3} \times 63,908$

N = 1403, 11 WPEQUENA DIFERENÇA!

PEQUENA DIFERENÇA AQUI!