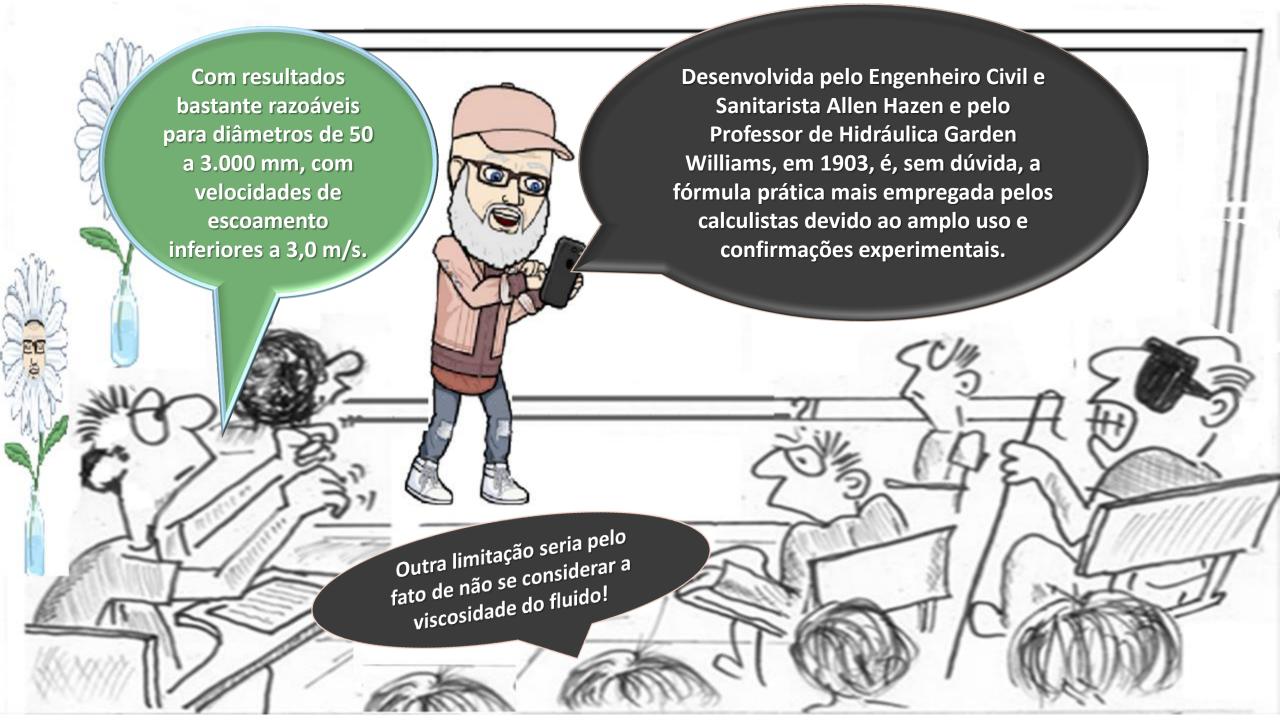


Sabesp retira mais de 5 mil toneladas de lixo das estações de tratamento de esgotos

Precisamos mudar isso!



Cerca de 915 elefantes africanos. Esse é o peso de todo o lixo que a Sabesp retirou das suas principais estações de tratamento de esgotos (ETEs) na Grande São Paulo no ano de 2017.

Fórmula de

Hazen - Williams

A fórmula de Hazen – Williams é uma fórmula empírica, o que equivale a dizer, que teve sua origem em ensaios, que foram realizados com a água em escoamentos turbulentos!

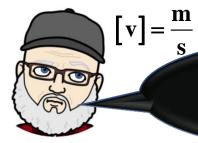
$$J = 10,643 \times Q^{1,85} \times C^{-1,85} \times D^{-4,87} \to J = \frac{Hp}{L}$$

$$[Q] = \frac{m^3}{s}; [C] = 1; [D] = m; [J] = \frac{m}{m}$$

"C" é o coeficiente de Hazen-Williams e depende do material do conduto e de seu estado.

Pode também ser escrita explicitando a Q e a v.

$$\mathbf{Q}^{1,85} = \frac{1}{10,643} \times \mathbf{C}^{1,85} \times \mathbf{D}^{4,87} \times \mathbf{J}$$

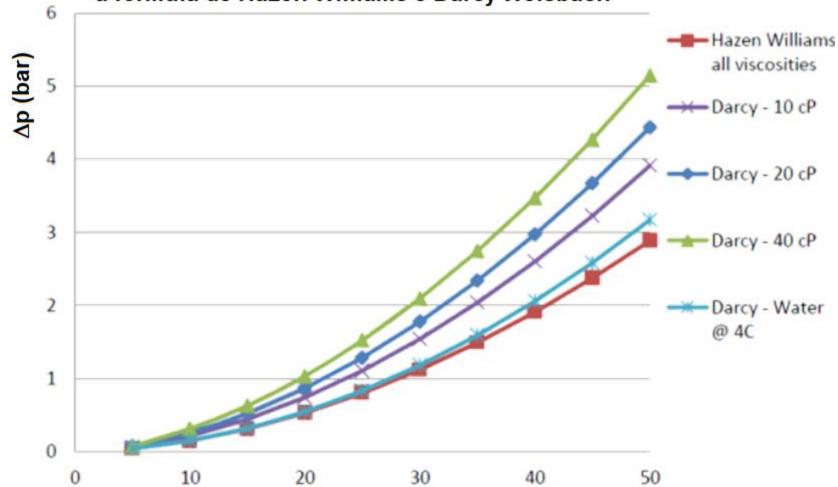

$$\mathbf{Q} = \mathbf{0}, 279 \times \mathbf{C} \times \mathbf{D}^{2,63} \times \mathbf{J}^{0,54}$$

Para tubos em série ou em paralelo, ou no caso mais geral de redes de tubulações a equação de Hazen-Williams facilita a solução de problemas!

$$\mathbf{v} \times \frac{\pi \times \mathbf{D}^2}{4} = \mathbf{0}, 279 \times \mathbf{C} \times \mathbf{D}^{2,632} \times \mathbf{J}^{0,541}$$

$$\mathbf{v} = \frac{4 \times 0,279}{\pi} \times \mathbf{C} \times \mathbf{D}^{2,632-2} \times \mathbf{J}^{0,541}$$

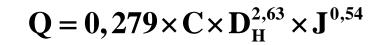
$$\mathbf{v} = \mathbf{0}, 355 \times \mathbf{C} \times \mathbf{D}^{0,632} \times \mathbf{J}^{0,541}$$



Aqui foi considerado conduto circular e forçado!

Variação da pressão em função da viscosidade para a fórmula de Hazen Williams e Darcy Weisbach

Qm (kg/s)



Após análise do diagrama anterior, podemos afirmar que a fórmula de Hazen Williams é recomendada para água com massa específica aproximadamente 1000 kg/m³ e viscosidade cinemática aproximadamente 10-6 m²/s e pode ser considerada para qualquer tipo de conduto e material

$$J = 10,643 \times Q^{1,85} \times C^{-1,85} \times D_{H}^{-4,87} \longrightarrow J = \frac{Hp}{L}$$

$$\mathbf{v} = \mathbf{0}, 355 \times \mathbf{C} \times \mathbf{D}^{0,63} \times \mathbf{J}^{0,54}$$

Esta só para condutos circulares e forçados

$$[Q] = \frac{m^3}{s}; [v] = \frac{m}{s}; [C] = 1; [D] = m; [J] = \frac{mca}{m}$$

A fórmula de Hazen-Williams, sendo das mais perfeitas, requer, para sua aplicação criteriosa, maior cuidado na adoção do coeficiente C. A escolha negligente desse coeficiente ou a fixação de um valor médio invariável reduz muito a precisão que se pode esperar de tal fórmula. Para tubos de ferro ou aço, o coeficiente C é uma função do tempo, de modo que seu valor deve prever a vida útil que se espera da canalização. Para avaliações expeditas, pode-se usar, para tubos metálicos, C = 100. Tal valor corresponde, aproximadamente, à situação da tubulação em quinze a vinte anos. (página 151)

No nosso material, estaremos apresentando as tabelas e gráficos sugeridos pelo Professor Dr. Gilberto Oswaldo Ieno.

Tabela 4.1 - Valores do coeficiente C (tubos novos)

Material dos tubos	Valores de C
Aço corrugado	60
Aço rebitado, em uso	85
Ferro fundido em uso	90
Tijolos ou condutos de cimento alisado	100
Aço rebitado novo	110
Ferro fundido ou tubos revestidos com cimento	110
Grês cerâmico vidrado (manilhas)	110
Aço soldado novo	120
Concreto com acabamento comum	120
Madeira em aduelas	120
Aço galvanizado novo ou usado	125
Aço soldado com revestimento especial, novo ou usado	130
Chumbo	130
Cobre	130
Concreto com acabamento liso	130
Ferro fundido novo	130
Latão	130
Aço com juntas "loock-bar"	135
Cimento- amianto	135
Vidro	140

Valores de C

									0.50	0.60	0,75	0,90	1,05	1,50
diâmetro	0,10	0,15	0,20	0,25	0,30	0,35	0,40	0,45	0,50	0,60	0,73	0,50	1,00	.,
anos (m)	4"	6"	8"	10"	12"	14"	16"	18"	20"	24"	30"	36"	42"	60"
			130	130	130	130	130	130	130	130	130	130	130	130
0	130	130	130	150			400	120	120	120	121	122	122	122
5	117	118	119	120	120	120	120	120				442	113	113
	400	108	109	110	110	110	111	112	112	112	113	113	113	
10	106	100				402	104	104	105	105	106	106	106	106
15	96	100	102	103	103	103	104				400	100	100	100
20	88	93	94	96	97	97	98	98	99	99	100	100		
20	00				04	91	92	92	93	93	94	94	94	95
25	81	86	89	91	91	91				- 00	90	90	90	91
30	75	80	83	85	86	86	87	87	88	89	90			
30				00	82	82	83	84	85	85	86	86	87	88
35	70	75	78	80	02				0.4	81	82	83	83	84
40	64	71	74	76	78	78	79	80	81	01			00	81
			74	73	75	76	76	77	77	78	78	78	80	01
45	60	67	71	13			70	73	74	75	76	76	77	78
50	56	63	67	70	71	72	73	13	74	, 0				

para FoFo

Calcular a perda de carga em uma tubulação nova de 10" de diâmetro, e 1480 m de comprimento, feita de ferro fundido de coeficiente C = 130, por onde passa uma vazão de 100 L/s.

Dados: D = 10" = 0,254 m

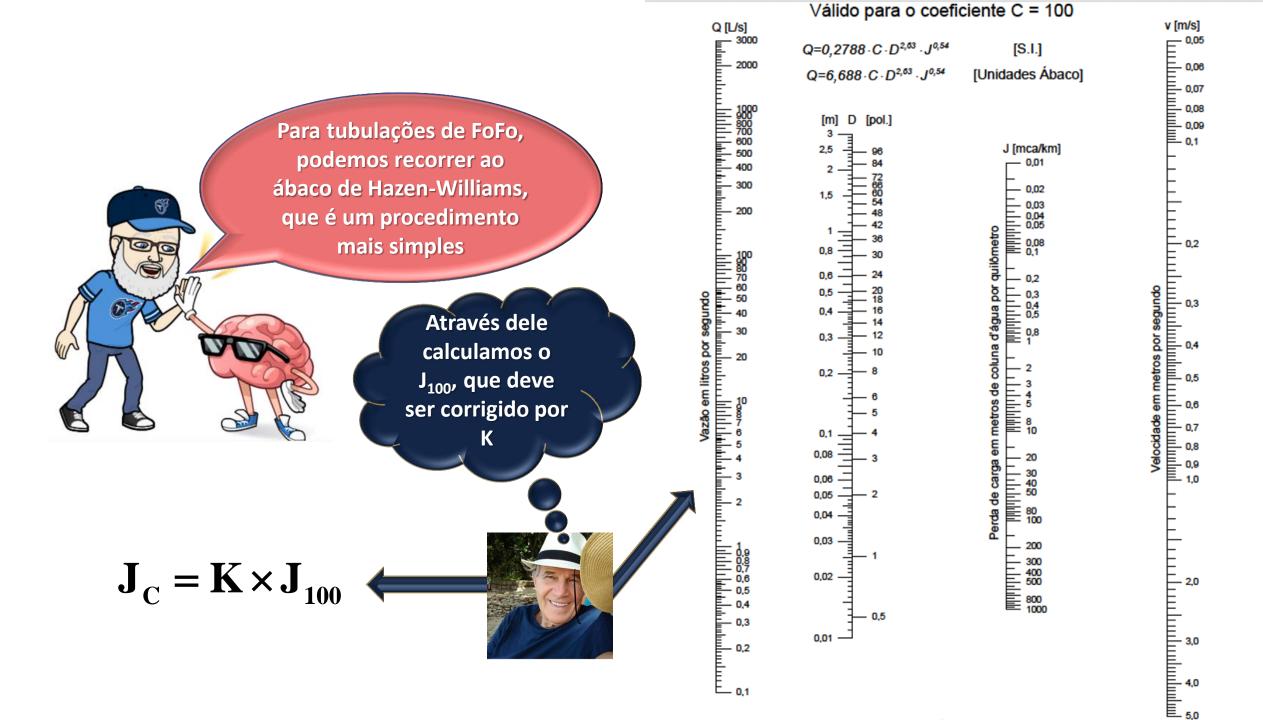
$$J = 10,643 \times \left(\frac{Q}{C}\right)^{1,85} \times \frac{1}{D^{4,87}} \to J = \frac{Hp}{L} \qquad \frac{Hp}{1480} = 10,643 \times \left(\frac{100/1000}{130}\right)^{1,85} \times \frac{1}{0,254^{4,87}}$$

 $\therefore Hp = 1480 \times 0,014612639 \Rightarrow Hp \cong 21,63m$

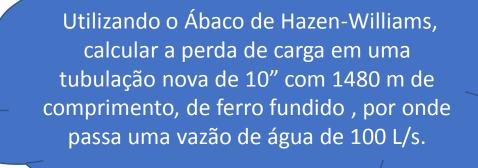
Calcular a perda de carga em uma tubulação de 20 anos de 10" de diâmetro, e 1480 m de comprimento, feita de ferro fundido, por onde passa uma vazão de 100 L/s.

Dados: D = 10'' = 0.254 m

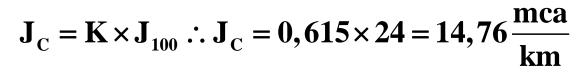
Neste caso o C = 96

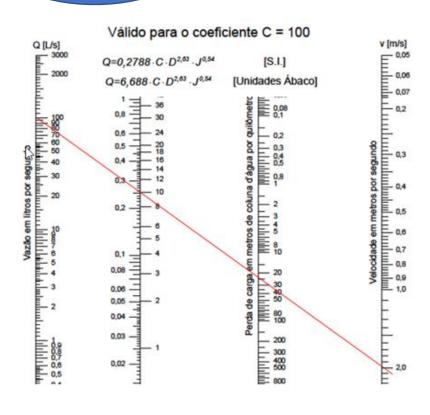

$$J = 10,643 \times \left(\frac{Q}{C}\right)^{1,85} \times \frac{1}{D^{4,87}} \rightarrow J = \frac{Hp}{L} \qquad \frac{Hp}{1480} = 10,643 \times \left(\frac{100/1000}{96}\right)^{1,85} \times \frac{1}{0,254^{4,87}}$$

 $\therefore Hp = 1480 \times 0,02560484 \Rightarrow Hp \cong 37,9m$



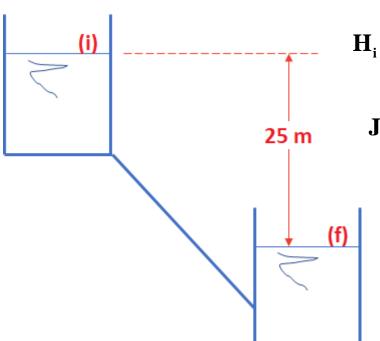
Fatores de correção K para diferentes Valores do Hazen Williams coeficiente C da fórmula de Hazen Valores do Coeficiente C da fórmula de Valores do C da fórmula de Valo


С	К	С	К	С	К	С	к
40	5,547	70	1,936	100	1,000	130	0,615
41	5,213	71	1,886	101	0,982	131	0,606
42	4,986	72	1,827	102	0,964	132	0,598
43	4,772	73	1,791	103	0,947	133	0,590
44	4,574	74	1,747	104	0,930	134	0,852
45	4,388	75	1,704	105	0,914	135	0,574
46	4,213	76	1,662	106	0,898	136	0,566
47	4,048	77	1,623	107	0,882	137	0,558
48	3,893	78	1,584	108	0,867	138	0,551
49	3,748	79	1,547	109	0,852	139	0,543
50	3,610	80	1,512	110	0,838	140	0,536
51	3,480	81	1,477	111	0,824	141	0,529
52	3,370	82	1,444	112	0,811	142	0,522
53	3,241	83	1,412	113	0,797	143	0,516
54	3,131	84	1,381	114	0,785	144	0,509
55	3,026	85	1,351	115	0,772	145	0,503
56	3,927	86	1,322	116	0,760	146	0,496
57	2,832	87	1,294	117	0,748	147	0,490
58	2,742	88	1,267	118	0,736	148	0,484
59	2,657	89	1,241	119	0,725	149	0,478
60	2,576	90	1,215	120	0,713	150	0,472
61	2,498	91	1,191	121	0,703	151	0,466
62	2,424	92	1,167	122	0,692	152	0,461
63	2,353	93	1,144	123	0,682	153	0,455
64	2,285	94	1,121	124	0,671	154	0,449
65	2,221	95	1,100	125	0,661	155	0,444
66	2,159	96	1,079	126	0,652	156	0,439
67	2,099	97	1,058	127	0,642	157	0,434
68	2,043	98	1,038	128	0,633	158	0,429
69	1,988	99	1,019	129	0,624	159	0,424


Pela fórmula tinha dado 21,63 m

T	~	24	mca
J 100	=	4 4	km

С	К
130	0,615

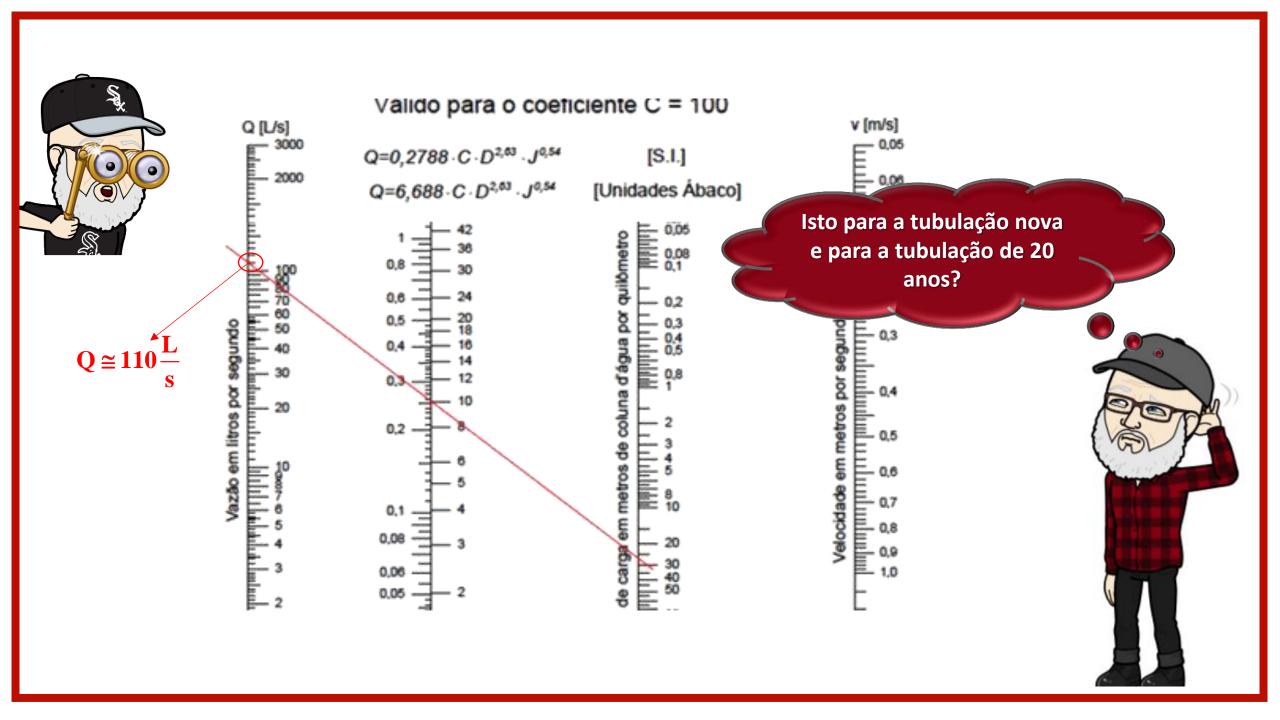


$$Hp = 14,76 \times 1,48 \cong 21,9m$$

Admitindo-se que e tubulação da questão anterior esteja interligando dois reservatórios com diferença de nível de 25 m e que o comprimento total, incluindo ao comprimento equivalentes seja 1480 m, pede-se determinar a vazão para a instalação nova e para a instalação com 20 anos.

$$H_{i} = H_{f} + Hp_{i-f} \Rightarrow z_{i} + \frac{p_{i}}{\gamma} + \frac{v_{i}^{2}}{2g} = z_{f} + \frac{p_{f}}{\gamma} + \frac{v_{f}^{2}}{2g} + Hp_{i-f} \rightarrow PHR \ em \ (f) \therefore Hp_{i-f} = 25m$$

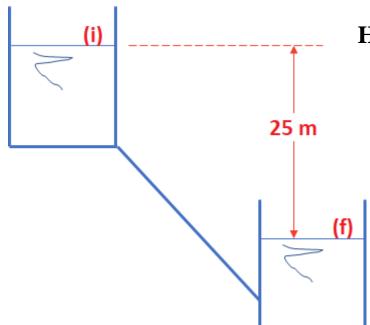
$$J_{C} = \frac{Hp_{i-f}}{L} = \frac{25}{1,48} \cong 16,9 \frac{mca}{km} \qquad \text{Tubulação nova}$$


$$J_{C} = \frac{Hp_{i-f}}{L} = \frac{25}{1.48} \cong 16.9 \frac{mca}{km}$$
 Tubulação

С	к
130	0,615

$$J_{C} \cong 16,9 \frac{mca}{km} = 0,615 \times J_{100} :: J_{100} \cong 27,5 \frac{mca}{km}$$

Agora é trabalhar no ábaco de Hazen-Williams

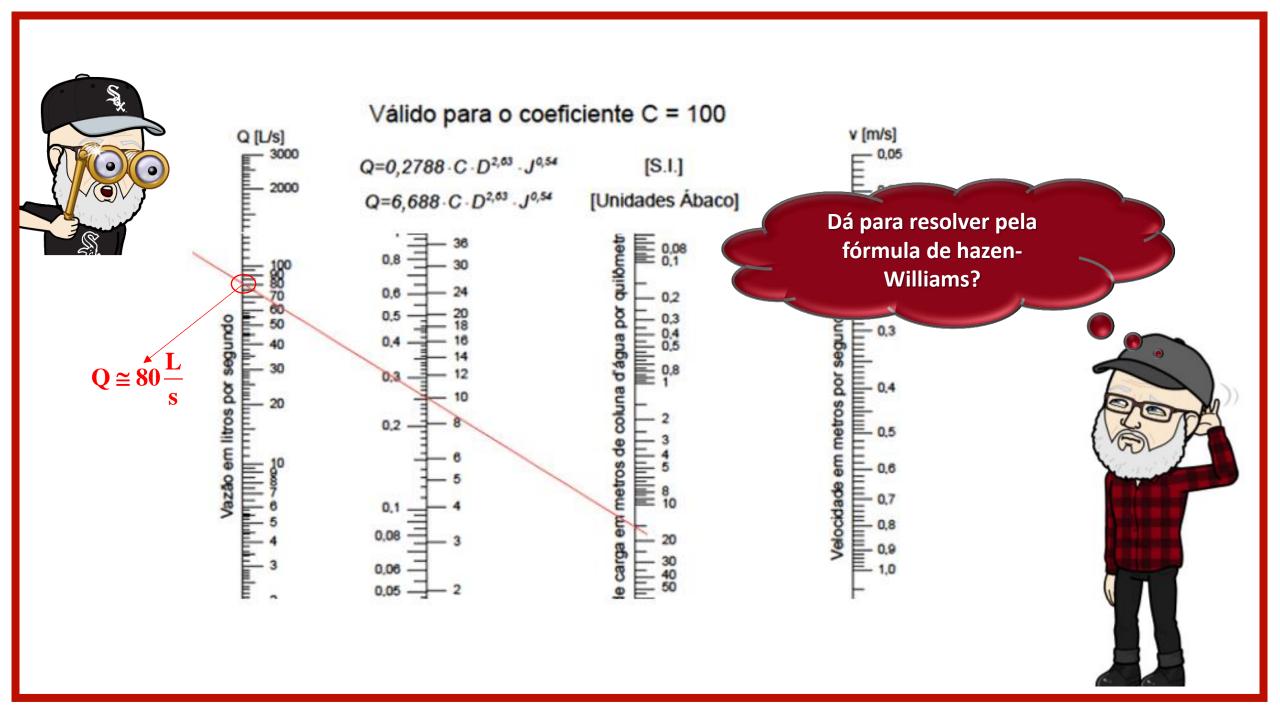


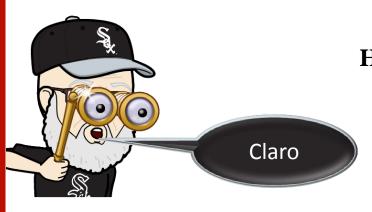
Para a instalação depois de 20 anos, muda o valor do C e em consequência do K

diâmetro	0,10	0,15	0,20	0,25
anos	4"	6"	8"	10"
0	130	130	130	130
5	117	118	119	120
10	106	108	109	110
15	96	100	102	103
20	88	93	94	96

$$\therefore$$
 C = 96

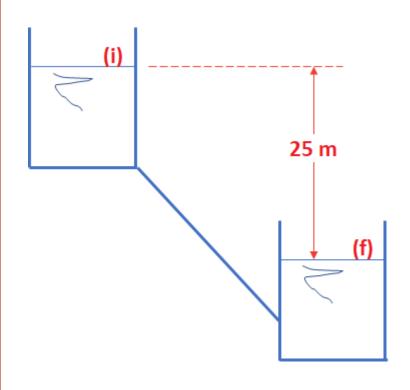
$$\mathbf{H_i} = \mathbf{H_f} + \mathbf{H}\mathbf{p_{i-f}} \Rightarrow \mathbf{z_i} + \frac{\mathbf{p_i}}{\gamma} + \frac{\mathbf{v_i^2}}{2\mathbf{g}} = \mathbf{z_f} + \frac{\mathbf{p_f}}{\gamma} + \frac{\mathbf{v_f^2}}{2\mathbf{g}} + \mathbf{H}\mathbf{p_{i-f}} \rightarrow \mathbf{PHR} \ \mathbf{em} \ (\mathbf{f}) \therefore \mathbf{H}\mathbf{p_{i-f}} = 25\mathbf{m}$$


J_C =
$$\frac{Hp_{i-f}}{L} = \frac{25}{1,48} \cong 16,9 \frac{mca}{km}$$
 Tubulação com 20 anos


С	к	
96	1,079	

$$J_{C} \cong 16,9 \frac{mca}{km} = 1,079 \times J_{100} :: J_{100} \cong 15,7 \frac{mca}{km}$$

Novamente, recorremos ao ábaco de Hazen-Williams



$$H_{i} = H_{f} + Hp_{i-f} \Rightarrow z_{i} + \frac{p_{i}}{\gamma} + \frac{v_{i}^{2}}{2g} = z_{f} + \frac{p_{f}}{\gamma} + \frac{v_{f}^{2}}{2g} + Hp_{i-f} \rightarrow PHR \ em \ (f) \therefore Hp_{i-f} = 25m$$

$$J_{C} = \frac{Hp_{i-f}}{L} = \frac{25}{1,48} \cong 16,9 \frac{mca}{km} = \frac{16,9}{1000} \frac{mca}{m}$$

$$\mathbf{Q} = \mathbf{0}, 279 \times \mathbf{C} \times \mathbf{D}^{2,63} \times \mathbf{J}^{0,54}$$

$$\therefore Q = 0,279 \times 96 \times 0,254^{2,63} \times \left(\frac{16,9}{1000}\right)^{0,54}$$

$$Q \cong 0,0805 \frac{m^3}{s} = 80,5 \frac{L}{s}$$

Refaça o exercício para uma tubulação de 8"

