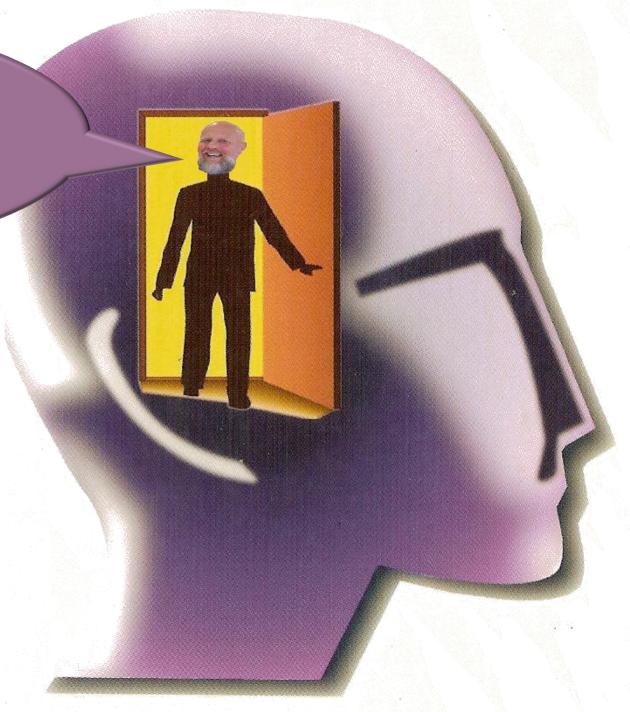
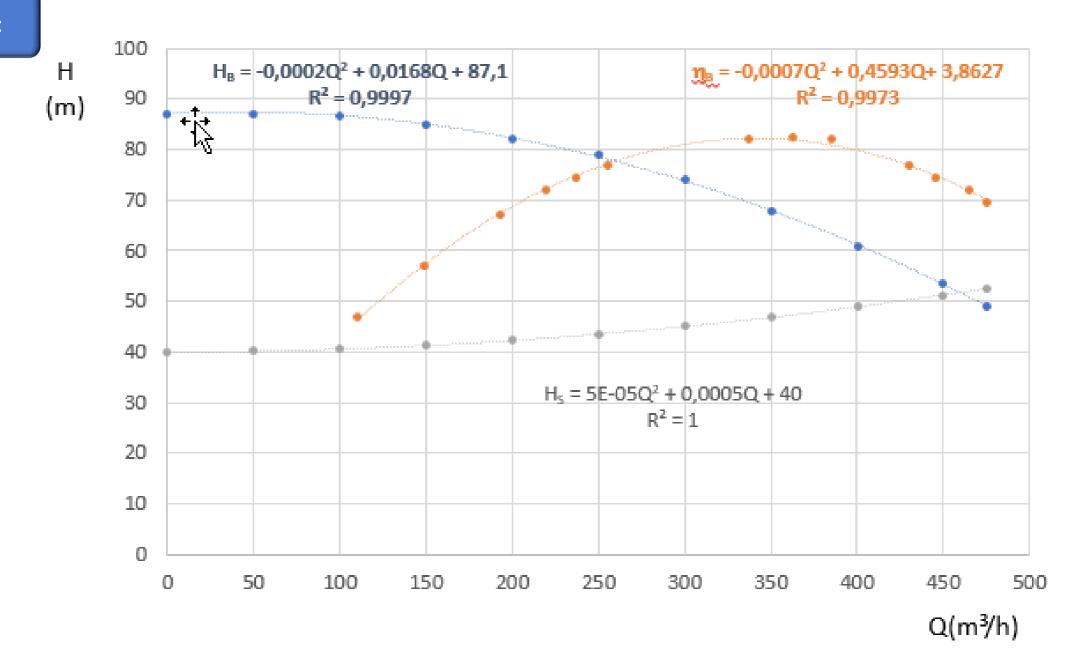
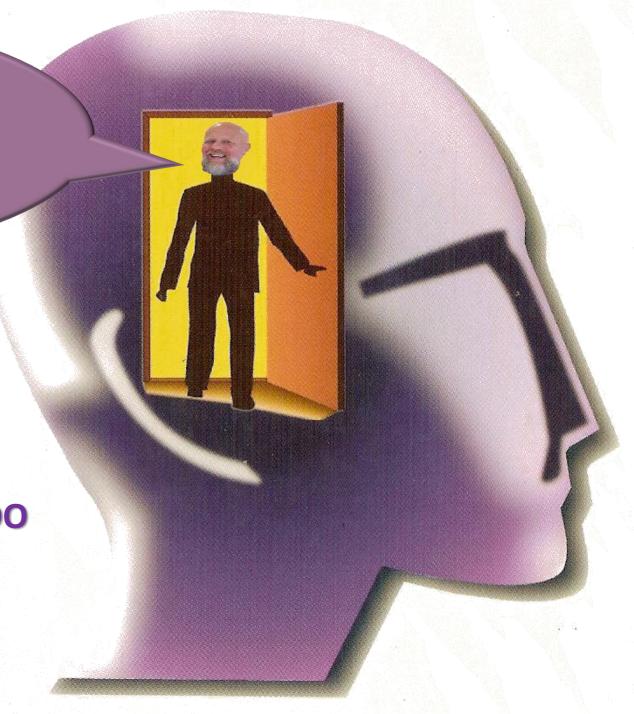

Amplie seu mundo, evolua a partir de novos questionamentos ...

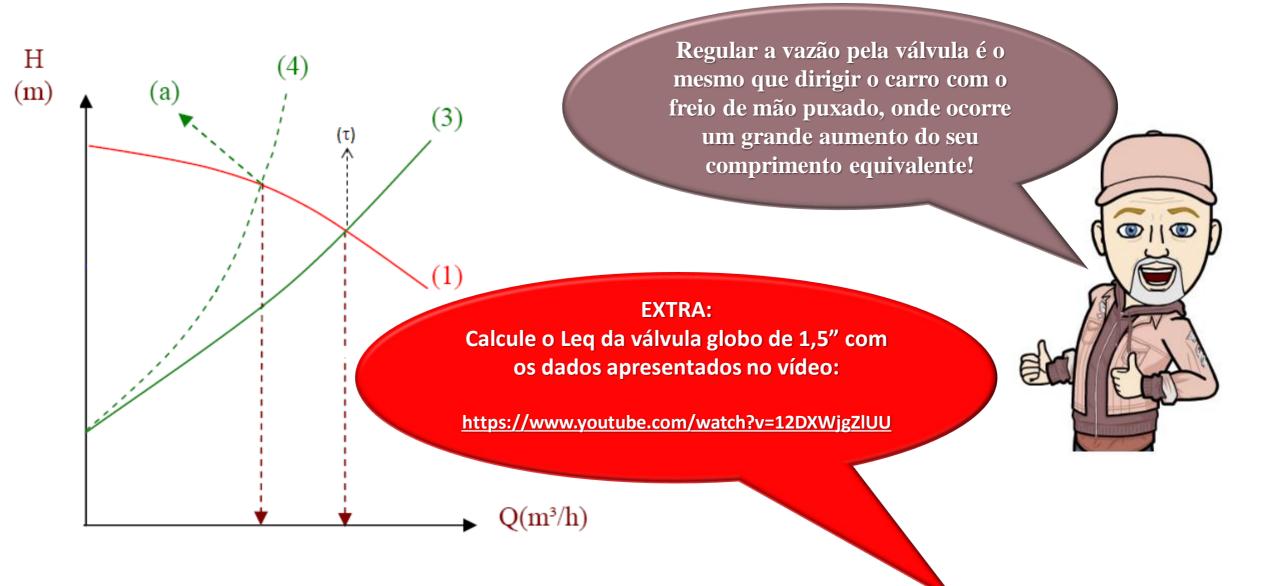


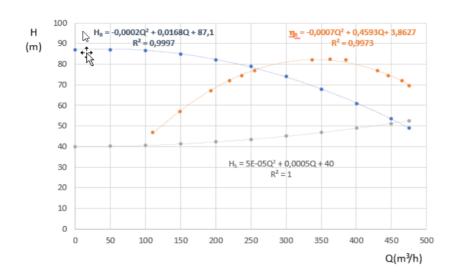
A instalação de recalque esquematizada acima deve operar com uma vazão de escoamento igual a 430 m³/h.



AO RESOLVER O PROBLEMA PROPOSTO NO PRIMEIRO ENCONTRO FOI ESCOLHIDA A BOMBA DE $D_R = 207$ mm, PORÉM AO DESEJAR A VAZÃO DE 430 m³/h, COMO IREMOS OBTÊ-LA?


Dados:


CONSEGUIMOS A VAZÃO DE 430 m³/h DE DUAS MANEIRAS DIFERENTES:


 FECHANDO PARCIALMENTE A VÁLVULA GLOBO;

 UTILIZANDO UM INVERSOR DE FREQUÊNCIA, OU SEJA, ALTERANDO A ROTAÇÃO DA BOMBA.

Azevedo Netto & Alvarez (1991) citam o controle de vazão através do fechamento de registro na saída das motobombas, como sendo uma das práticas mais comuns; neste caso, há introdução de perda de carga acidental na curva do sistema, proporcionando desperdício de energia.

No ponto de trabalho inicial (τ) onde a vazão era 467,9 m³/h, carga manométrica igual a 51,2 m e rendimento igual a 65,52%, mostro o cálculo da potência nominal da bomba.

YouTube:

https://www.youtube.com/watch?v=-BYbrj5FEtA

$$2,5 \times 10^{-4} \times Q^2 - 0,0163 \times Q - 47,1 = 0$$

$$Q_{\tau} = \frac{0,0163 + \sqrt{0,0163^2 + 4 \times 2,5 \times 10^{-4} \times 47,1}}{2 \times 2,5 \times 10^{-4}} \cong 467,9 \frac{m^3}{h}$$

$$Hs = 5 \times 10^{-5} \times 467,9^2 + 0,0005 \times 467,9 + 40 \Rightarrow Hs \cong 51,2m$$

$$\eta_{\text{B}} = -0.0007 \times 467.9^2 + 0.4593 \times 467.9 + 3.8627 \Rightarrow \eta_{\text{B}} \cong 65.52\%$$

$$N_{B_{\tau}} = \frac{\gamma \times Q_{\tau} \times H_{B_{\tau}}}{\eta_{B_{\tau}}} \Rightarrow N_{B} = \frac{998,2 \times 9,8 \times \left(\frac{467,9}{3600}\right) \times 51,2}{0,6552}$$

$$N_{B_{-}} \cong 99355,2W \approx 99,4kW$$

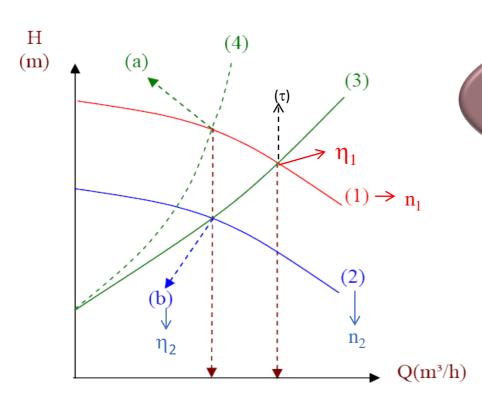
Fechando parcialmente a válvula, mantemos as CCB fixas e alteramos a CCI, nesta situação observamos uma diminuição da potência nominal, que ocorreu pelo fato de ter um aumento do rendimento da bomba, isto porque o ponto de trabalho ficou a direita do rendimento máximo.

$$Q_a = 430 \frac{m^3}{h}$$

$$H_{Ba} = -0,0002 \times 430^2 + 0,0168 \times 430 + 87,1 \cong 57,344 \text{m}$$

$$\eta_{Ba} = -0.0007 \times 430^2 + 0.4593 \times 430 + 3.8627 \cong 71.9446\%$$

$$N_{Ba} = \frac{998,2 \times 9,8 \times \left(\frac{430}{3600}\right) \times 57,344}{0,719446} \approx 93132,1W \approx 93,2kW$$


"Segundo Brown (2.001), estima-se que de toda energia elétrica utilizada pela indústria, 65% seja destinada a motores elétricos e que, do montante relativo a esse percentual, 20% seja desperdiçado por mecanismos de controle (ex.: válvula)".[Wladimir Rodrigues em seu artigo relacionado ao uso dos inversores de frequência]

E isso é um problema bastante sério!

E o inversor de frequência soluciona este problema?

Na utilização do inversor de frequência mantemos a CCI fixa e alteramos a curva da carga manométrica em função da vazão, isto porque alteramos a rotação da bomba.

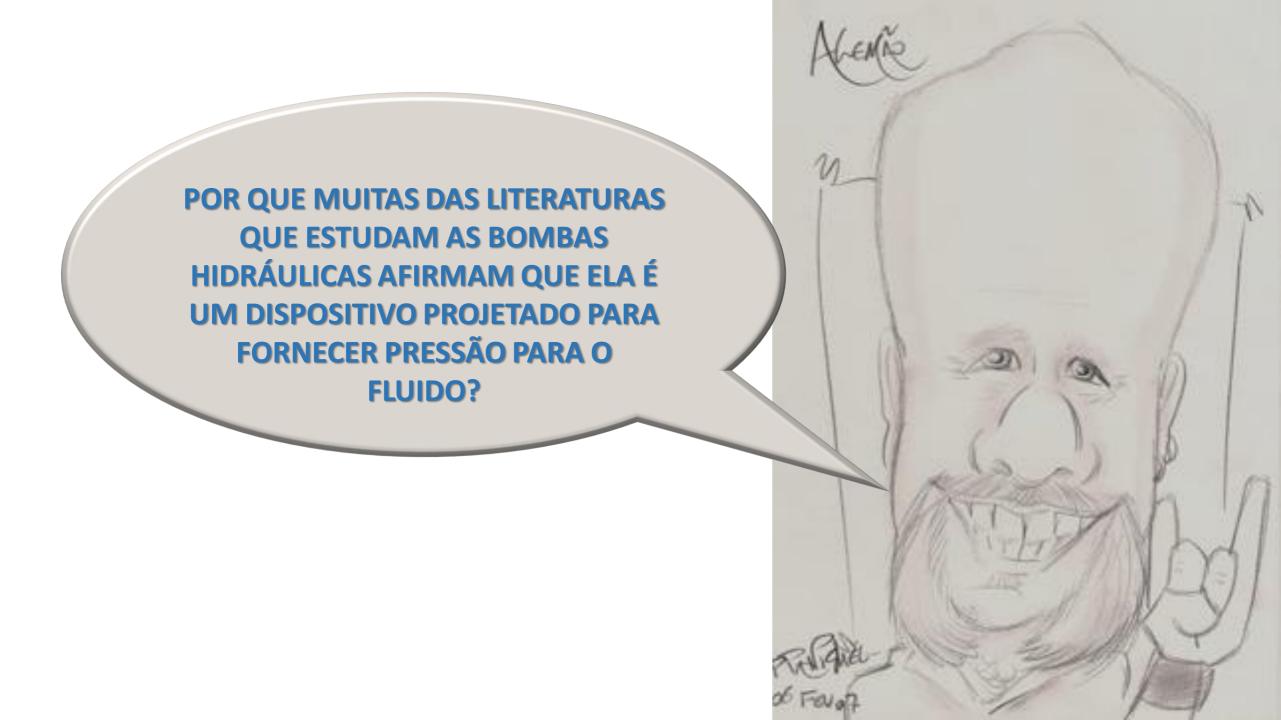
Já com o inversor a potência consumida diminui, porque ocorre tanto uma redução da vazão como a redução da carga manométrica, o rendimento η_2 terá que ser calculado pela teoria da semelhança, pois apesar de ser próximo de η_1 é diferente!

n → rotação síncrona

$$n = \frac{120 \times f}{p}$$

 $f \rightarrow frequência$

p → número de pólos


Pela análise dimensional e semelhança completa, temos:

$$\mathbf{H}_2 = \left(\frac{\mathbf{n}_2}{\mathbf{n}_1}\right)^2 \times \mathbf{H}_1 e \mathbf{Q}_2 = \left(\frac{\mathbf{n}_2}{\mathbf{n}_1}\right) \times \mathbf{Q}_1$$

A BOMBA HIDRÁULICA
CERTAMENTE É UM
DISPOSITIVO PROJETADO
PARA FORNECER CARGA
(ENERGIA POR UNIDADE DE
PESO) PARA O FLUIDO.

Pela equação da energia aplicada entre a seção de entrada e saída da bomba, compreendemos isto:

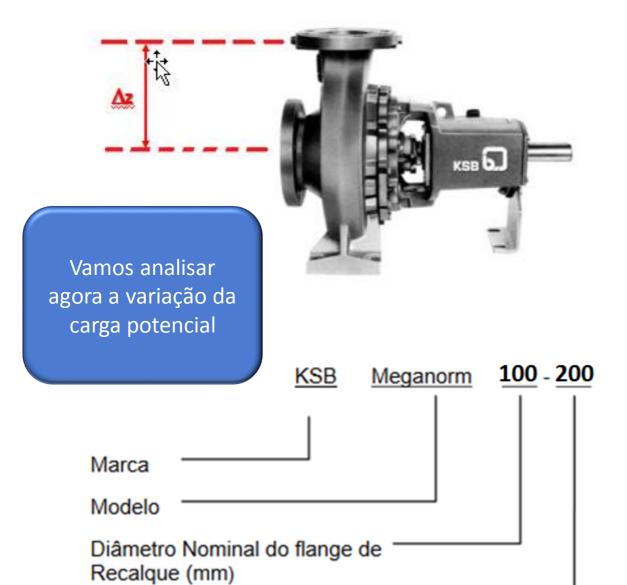
$$H_{B} = \left(z_{s} - z_{e}\right) + \left(\frac{p_{s} - p_{e}}{\gamma}\right) + \left(\frac{v_{s}^{2} - v_{e}^{2}}{2g}\right)$$

$$\left(\frac{v_s^2 - v_e^2}{2g}\right) \ge 0 \Leftrightarrow (z_s - z_e) \ge 0 \Rightarrow \text{se differente de zero são valores}$$

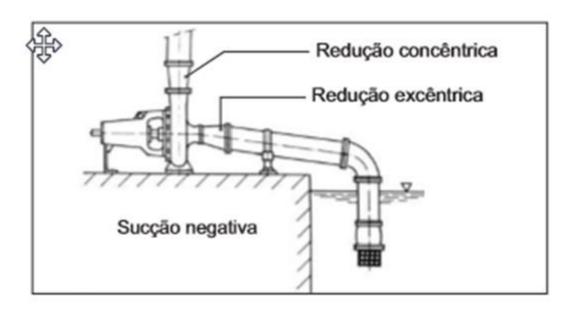
pequenos comparados com o valor de H_B, e isto garante que a bomba é feita

para fornecer pressão e neste caso temos que $H_B \approx \frac{\Delta p}{\gamma}$

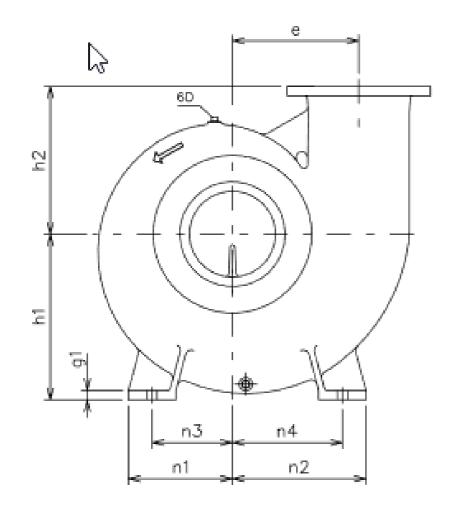
$$\left(\frac{\mathbf{v}_{s}^{2}-\mathbf{v}_{e}^{2}}{2\mathbf{g}}\right)=?$$


PARA DEMONSTRAR QUE $H_B = \Delta p/\gamma$, VOLTAMOS AO PROBLEMA https://www.youtube.com/watch?v=DAkxlGmb6bE

$$H_B = 50 \text{m} \Rightarrow Q = 430 \frac{\text{m}^3}{\text{h}}$$

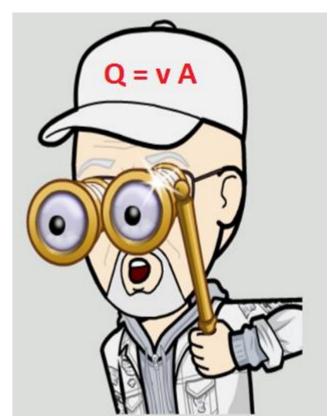

$$D_{\text{sução}} = D_{\text{N}} = 300 \text{mm} \Rightarrow D_{\text{int}} = 319,53 \text{mm} : v_{\text{suc}} = \frac{4 \times (430/3600)}{\pi \times 0,31953^2} \approx 1,49 \frac{\text{m}}{\text{s}}$$


$$D_{recalque} = D_{N} = 250 \text{mm} \Rightarrow D_{int} = 267,21 \text{mm} : v_{rec} = \frac{4 \times \left(430 / 3600\right)}{\pi \times 0,0,26721^{2}} \cong 2,13 \frac{\text{m}}{\text{s}}$$


$$\frac{v_{\text{rec}}^2 - v_{\text{suc}}^2}{2g} = \frac{2,13^2 - 1,49^2}{19,6} \cong 0,1182\text{m} : \cong 0,231\% \text{ de } 51,2\text{m}$$

Diâmetro nominal do rotor (mm)

 $0.25 \le h_2 \le 0.30 \text{m}$: $0.49\% \le \text{em relação ao } H_B = 51.2 \text{m} \le 0.586\%$


PORTANTO NESTE CASO A SOMA DA VARIAÇÃO DA CARGA POTENCIAL MAIS A CARGA CINÉTICA FICA NA ORDEM DE 1% DA CARGA MANOMÉTRICA, PORTANTO FICA COMPROVADO QUE O $H_B = 51,2m$ É PRATICAMENTE SÓ FORMADO POR $\Delta p/\gamma$

$$H_{\rm B} \cong \left(\frac{p_{\rm s} - p_{\rm e}}{\gamma}\right) = \frac{\Delta p}{\gamma} :: \Delta p \cong \gamma \times H_{\rm B}$$

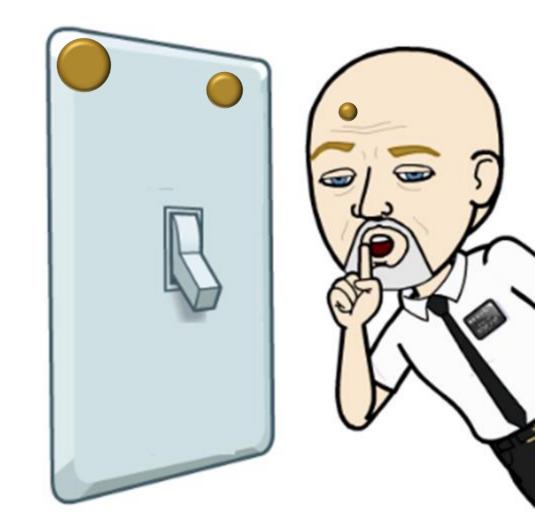
A variação de pressão propiciada pela bomba será influenciada por diversas variáveis:

- ρ = massa específica do fluido;
- μ = viscosidade dinâmica do fluido;
- n = rotação;
- D_R = diâmetro do rotor;
- Q = vazão;
- N_B = potência mecânica ou potência da bomba.

$$\Delta p = f(\rho, \mu, n, D_R, Q, N_B)$$

Aplicando o teorema dos π , ou teorema de Buckingham, ou teorema de Vaschy-Buckingham adotando como base ρnD_R resulta:

$$\text{Re }\alpha \frac{\rho n D_R^2}{\mu} \rightarrow \text{proporcional ao número de Reynolds}$$


$$\Psi = \frac{gH_B}{n^2D_R^2} \rightarrow \text{coeficiente manométrico}$$

$$\phi = \frac{Q}{nD_R^3} \rightarrow \text{coeficiente de vazão}$$

$$\chi = \frac{N_B}{\rho n^3 D_R^5} \rightarrow \text{coeficiente de potência}$$

Para o nosso caso a bomba é a mesma em ambas as possibilidades, portanto nenhuma dúvida em considerar que seja o caso de uma semelhança completa!

Para a semelhança completa, impomos as condições de semelhança:

$$\psi_{\text{modelo}} = \psi_{\text{prot\'otipo}}$$

$$\phi_{\text{mod elo}} = \phi_{\text{protótipo}}$$

$$\chi_{\text{mod elo}} = \chi_{\text{protótipe}}$$

E o rendimento, será uma condição de semelhança?

Para responder o questionamento anterior, evoco a expressão para o cálculo do rendimento da bomba:

$$\eta_{B} = \frac{\gamma \times Q \times H_{B}}{N_{B}}$$

$$Q = \phi \times n \times D_{R}^{3}$$

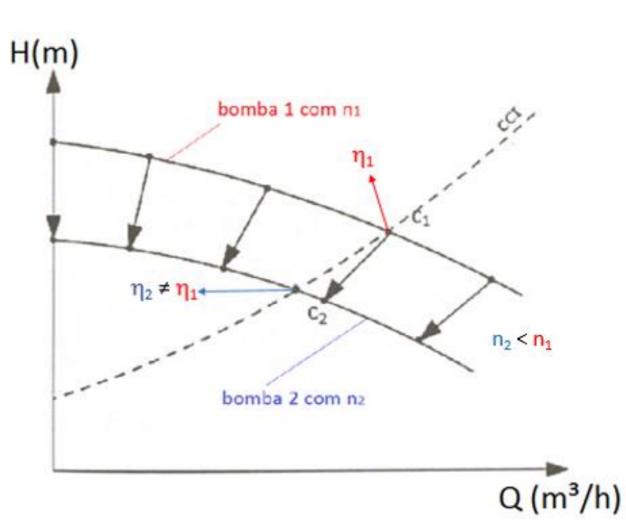
$$g \times H_{B} = \psi \times n^{2} \times D_{R}^{2}$$

$$N_{B} = \chi \times \rho \times n^{3} \times D_{R}^{5}$$

$$\therefore \eta_{B} = \frac{\rho \times \phi \times n \times D_{R}^{3} \times \psi \times n^{2} \times D_{R}^{2}}{\chi \times \rho \times n^{3} \times D_{R}^{5}}$$

Através dos adimensionais típicos das bombas hidráulicas, obtemos uma importante relação entre o rendimento da bomba e estes adimensionais

Como na condição de semelhança completa temos que: $\Phi_m = \Phi_p$; $\Psi_m = \Psi_p$ e $\chi_m = \chi_p$ podemos concluir que também fará parte das condições de semelhança a igualdade entre os rendimentos das bombas, ou seja: $\eta_m = \eta_p$.


$$\eta_{\rm B} = \frac{\phi \times \psi}{\chi}$$

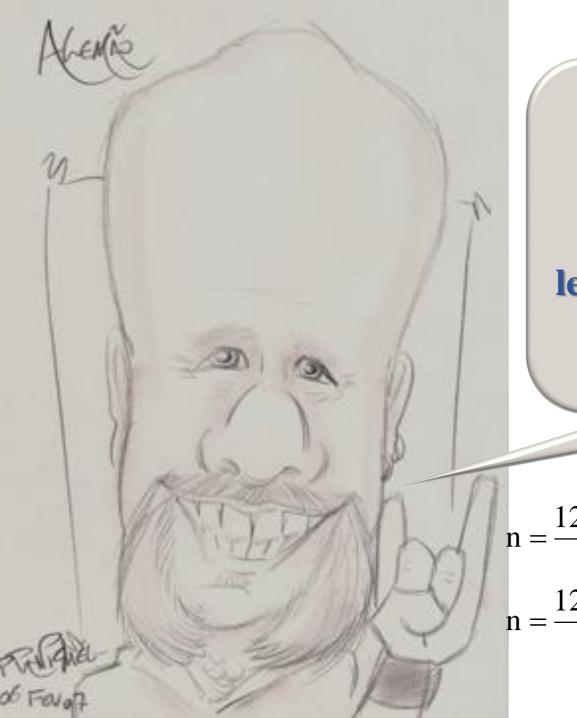
Será que isso vale sempre?

C₂ seria o ponto de semelhança completa com C₁, ou seja onde os adimensionais, incluindo o rendimento, seriam iguais!

Na prática o rendimento pode sofrer variações tanto com a rotação como com o diâmetro do rotor. Para a variação da rotação essa correção pode ser feita introduzindo-se os rendimentos na equação de potência, considerando para isto o rendimento η_1 em rotação nominal e o rendimento η_2 para uma rotação qualquer, que pode ser obtido a partir da expressão empírica 1 (Macintyre, Archibald Joseph - Bombas e Instalações de Bombeamento - editado pela Guanabara Dois - segunda edição) a seguir. Comolet (1.961) também propôs uma outra expressão empírica para essa correção (equação 2) que geralmente é utilizada para água quente.

$$\eta_2 = 1 - \left[\left(1 - \eta_1 \right) \times \left(\frac{n_2}{n_1} \right)^{0,1} \right] \rightarrow (1)$$

$$\eta_2 = \frac{\eta_1}{\eta_1 + (1 - \eta_1) \times \left(\frac{n_1}{n_2}\right)^{0,17}} \rightarrow (2)$$


GERALMENTE OS FABRICANTES DE BOMBA
OPTAM POR MOTORES ELÉTRICOS DE
CORRENTE ALTERNADAS, ASSÍNCRONOS, DE 2
E 4 PÓLOS, MAIS BARATOS E DE USO COMUM
NAS INDUSTRIAS.

PODEMOS CALCULAR A ROTAÇÃO PARA ESTAS DUAS OPÇÕES:

$$n = \frac{120 \times f}{p} \Rightarrow f \rightarrow frequência e p \rightarrow número de pólos$$

∴
$$n = \frac{120 \times 60}{2} = 3600 \text{rpm} \rightarrow \text{rotação síncrona}$$

$$n = \frac{120 \times 60}{\Delta} = 1800 \text{rpm} \rightarrow \text{rotação síncrona}$$

Como os motores são assíncronos existe o escorregamento no acoplamento bomba motor e isto leva a se ter as rotações nominais, no caso de 3500 e 1750 rpm.

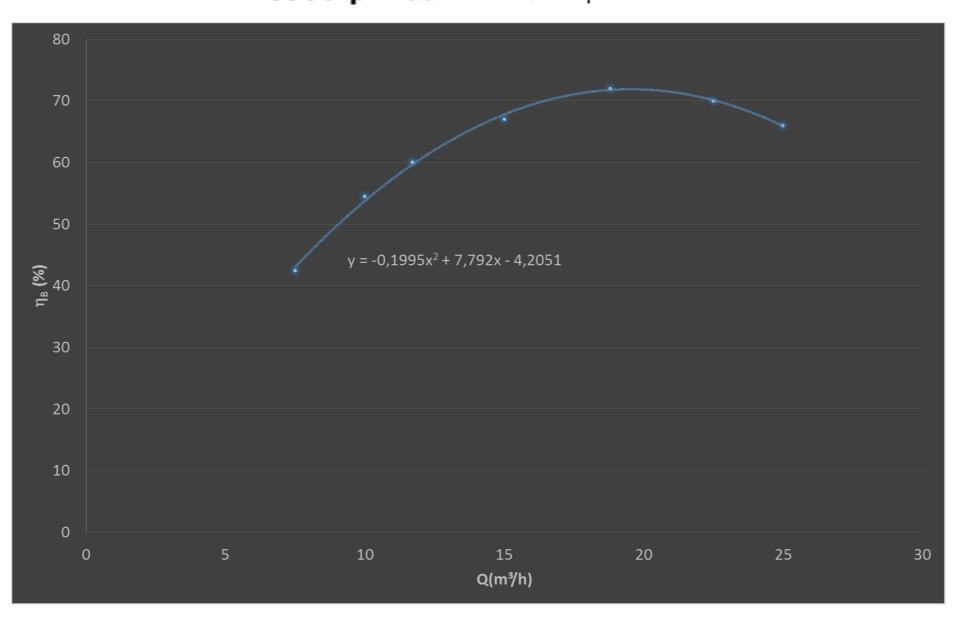
n =
$$\frac{120 \times 60}{2}$$
 = 3600rpm ∴ rotação assíncrona → n = 3500rpm

n =
$$\frac{120 \times 60}{4}$$
 = 1800rpm ∴ rotação assíncrona → n = 1750rpm

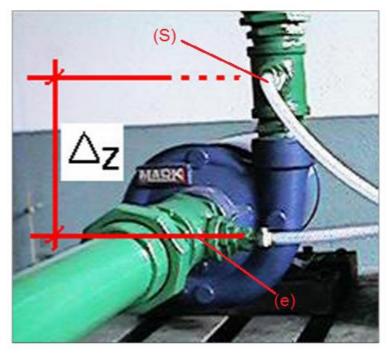
Antes de responder o questionamento desse encontro, vamos estudar e refletir sobre um problema similar!

Os dados foram obtidos na bancada da sala E039 do Centro Universitário da FEI onde trabalhamos com o inversor de frequência.

Esta experiência será feita numa bancada que ficou pronta em Julho de 1999 e foi projetada e montada por um grupo de alunos que cursou a disciplina no primeiro semestre de 1998. Agradecemos aos ex-alunos: Alexandre Martins Sousa (Mecânica – Automobilística), Fernando Augusto Callado (Mecânica – Produção) e Marcelo Dietrich Martini (Mecânica – Produção), formados em Julho/2000, que deixaram esta contribuição para o curso, de grande valor didático. Agradecemos também a Newtronic que doou o variador de freqüência e a Mark que fez a doação da bomba utilizada. A fábrica da Mark foi adquirida pela Grundfos, atual Grundfos-Mark.


O histórico deste projeto pode ser visto no site da disciplina, no endereço:

http://www.fei.edu.br/mecanica/SisFlu/projetoalunos.htm


Ao construir as curvas H_B = f(Q) para 60 Hz e 50 Hz, vamos procurar comprovar que a utilização do inversor trará uma redução na potência consumida e para viabilizar isto no próximo slide é dada a curva do rendimento da bomba em função da vazão.

Curva de Rendimento - DBC/MARK 3500rpm da MARK - \$105mm

Obtenção da carga manométrica

$$H_e + H_B = H_s : H_B = (z_s - z_e) + \frac{p_s - p_e}{\gamma} + \frac{\alpha_s v_s^2 - \alpha_e v_e^2}{2g}$$

Manômetros alinhados, portanto:

$$p_{m_e} = p_e \rightarrow p_{m_s} = p_s$$

Calculando a H_B

$$H_{B} = (z_{s} - z_{e}) + \frac{p_{m_{s}} - p_{m_{e}}}{\gamma} + \frac{\alpha_{s} v_{s}^{2} - \alpha_{e} v_{e}^{2}}{2g} \rightarrow v = \frac{Q}{A}$$

(e)
$$\rightarrow$$
 sucção \rightarrow 2" aço $40 \rightarrow D_{int} = 52,5 \text{mm} \rightarrow A = 21,7 \text{cm}^2$

(s)
$$\rightarrow$$
 recalque \rightarrow 1,5" aço 40 \rightarrow D_{int} = 40,8mm \rightarrow A = 13,1cm²

$$z_s - z_e = 15,5cm$$

$$1 \text{mmHg} = 1 \times 10^{-3} \times 9.8 \times 13600 \text{Pa}$$

 $1 \text{mmHg} = 133,28 \text{Pa}$

$$1\frac{\text{kgf}}{\text{cm}^2} = 9.8 \times 10^4 \text{ Pa}$$

Calculando a H_B

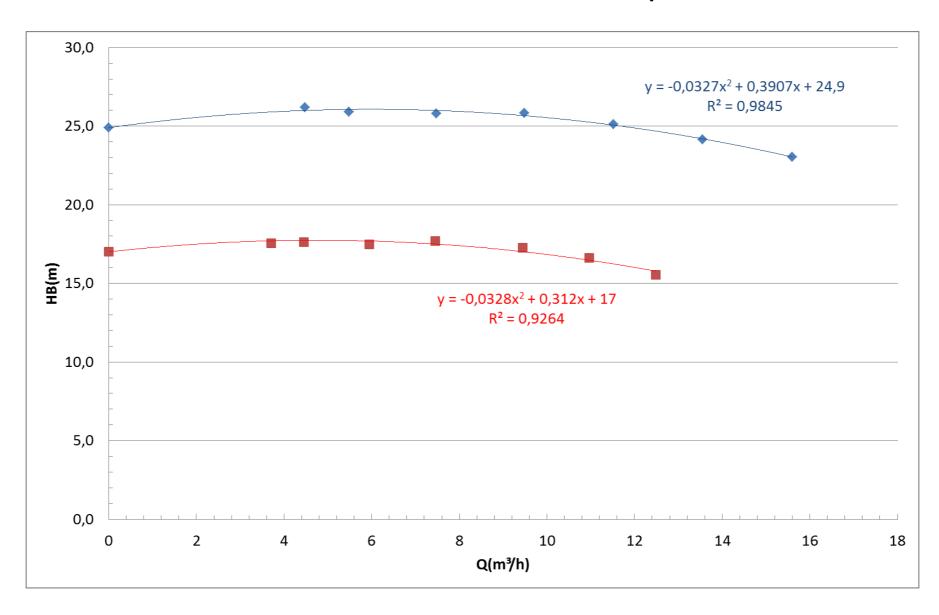
$$H_{B} = (z_{s} - z_{e}) + \frac{p_{m_{s}} - p_{m_{e}}}{\gamma} + \frac{\alpha_{s}v_{s}^{2} - \alpha_{e}v_{e}^{2}}{2g}$$

$$H_{B} = 0.155 + \frac{p_{m_{s}} \times 98000 - p_{m_{e}} \times 133.28}{998.2 \times 9.8} + \frac{1 \times v_{s}^{2} - 1 \times v_{e}^{2}}{19.6}$$

temperatura dos fluidos 20 ⁰ C	ρágua	ρнg	g	m Vágua	
	(kg/m³)	(kg/m³)	(m/s ²)	(m^2/s)	
	998,2	13546	9,8	1,00E-06	
dados da tubulações	Entrada			Saída	
	D _{int} (mm)	A(cm²)		D _{int} (mm)	A(cm²)
	52,5	21,7		40,8	13,1

Exemplo de tabela de dados

Experiência do inversor de frequência – primeira parte									
Frequência de 60 Hz					Frequência de 50 Hz				
	Q	p_{me}	p_{ms}	n	Q	p_{me}	p_{ms}	n	
Ensaio	(m³/h)	(mmHg)	(kgf/cm²)	(rpm)	(m³/h)	(mmHg)	(kgf/cm²)	(rpm)	
1	0	-30	2,5	3550	0	-30	1,7	2967	
2	5	-90	2,5	3519	4,25	-80	1,66	2946	
3	6,5	-100	2,45	3514	5	-90	1,65	2944	
4	8	-120	2,4	3509	6,5	-110	1,6	2941	
5	10	-150	2,35	3504	8	-120	1,6	2937	
6	12,5	-190	2,2	3493	10	-150	1,5	2931	
7	15,5	-250	2	3485	12,5	-200	1,35	2925	
8	17,5	-300	1,8	3477	14,5	-250	1,2	2921	
Frequência de 60 Hz					Frequência de 50 Hz				


Pelo Excel

Frequência de 60 Hz					Frequência de 50 Hz				
	Q_{exp}	Ve	V_S	Re _e	Q_{exp}	V _e	V_{S}	Re _e	
Ensaio	(m³/h)	(m/s)	(m/s)		(m³/h)	(m/s)	(m/s)		
1	0	0	0		0	0	0		
2	5	0,640	1,060	33468,3	4,25	0,544	0,901	28448,0	
3	6,5	0,832	1,4	43508,8	5	0,640	1,060	33468,3	
4	8	1,024	1,7	53549,2	6,5	0,832	1,4	43508,8	
5	10	1,3	2,1	66936,6	8	1,024	1,7	53549,2	
6	12,5	1,6	2,7	83670,7	10	1,3	2,1	66936,6	
7	15,5	2,0	3,3	103751,7	12,5	1,6	2,7	83670,7	
8	17,5	2,2	3,7	117139,0	14,5	1,9	3,1	97058,0	

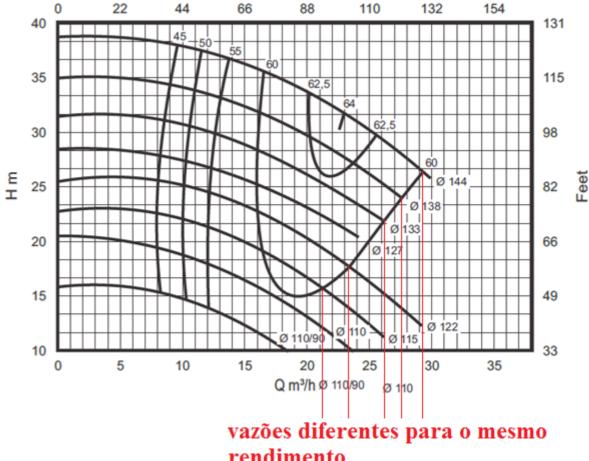
Pelo Excel

Frequência de 60 Hz					Frequência de 50 Hz				
	Q_{exp}	H_Bexp	Q ₃₅₀₀	H _{B3500}	Q_{exp}	H_Bexp	Q ₂₉₁₆	H _{B2916}	
Ensaio	(m³/h)	(m)	(m³/h)	(m)	(m³/h)	(m)	(m³/h)	(m)	
1	0	25,6	0	24,9	0	17,6	0	17,0	
2	4,5	26,5	4,5	26,2	3,75	17,9	3,7	17,5	
3	5,5	26,1	5,5	25,9	4,5	18,0	4,5	17,6	
4	7,5	25,9	7,5	25,8	6	17,8	5,9	17,5	
5	9,5	25,9	9,5	25,8	7,5	18,0	7,4	17,7	
6	11,5	25,0	11,5	25,1	9,5	17,5	9,5	17,3	
7	13,5	23,9	13,6	24,2	11	16,7	11,0	16,6	
8	15,5	22,7	15,6	23,0	12,5	15,6	12,5	15,5	

Curvas obtidas através da experiência

Pontos para os cálculos das potências nominais da bomba a 60 e 50 Hz

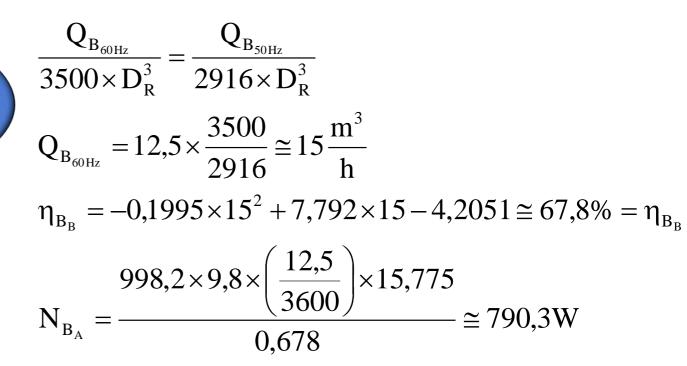
O ponto B é obtido com a válvula controladora fechada parcialmente, já o ponto A é obtido com a válvula totalmente aberta!



$$Q_A = Q_B = 12.5 \frac{m^3}{h}$$

 $H_{B_A} = 15.775 m$

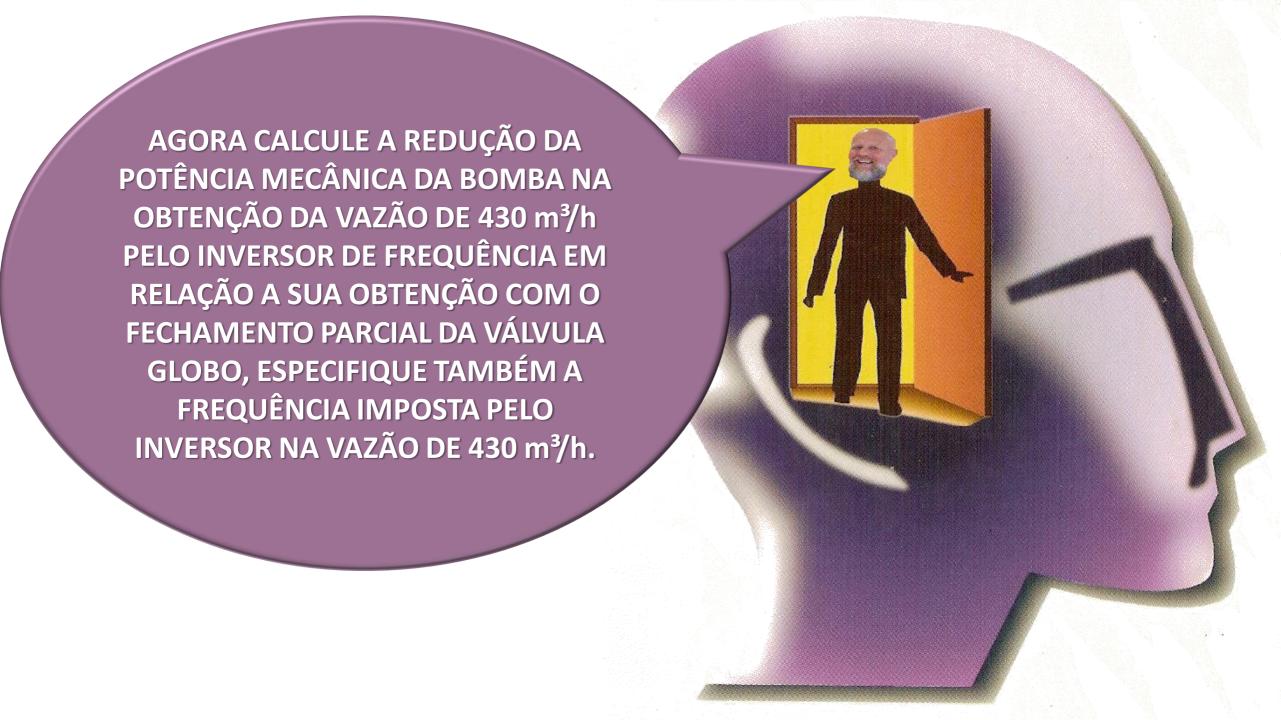
$$\begin{split} H_{BB} &= -0.0327 \times 12.5^2 + 0.3907 \times 12.5 + 24.9 \cong 24.7 m \\ \eta_{BB} &= -0.1995 \times 12.5^2 + 7.792 \times 12.5 - 4.2051 \cong 62\% \\ N_{BB} &= \frac{998.2 \times 9.8 \times \binom{12.5}{3600} \times 24.7}{0.62} \cong 1353.2 W \end{split}$$


O rendimento do ponto B deve ser determinado com auxílio da analise dimensional

O gráfico ao lado fornecido pelo fabricante justifica o porque devemos recorrer a análise dimensional e calcular o rendimento do ponto B.

rendimento

Recorremos ao coeficiente de vazão e obtemos a Q de 3500 rpm (60 Hz) que tem rendimento igual ao do ponto B.



A partir deste ponto deveríamos fazer uma análise financeira e ambiental, pois verificaríamos o tempo de amortização do investimento inicial na compra e instalação do inversor de frequência com a redução do custo da energia e aí entra também a parte ambiental.

Principalmente porque a geração de energia no Brasil em grande parte está alicerçada em hidroelétricas!

Quando não mais
existir esperança
nem confiança
num mundo melhor,
olhe para seu interior
e verás
que sua vida
acabou ...
Continue vivo...
Este é o meu pedido
(Raimundo Ferreira Ignácio)