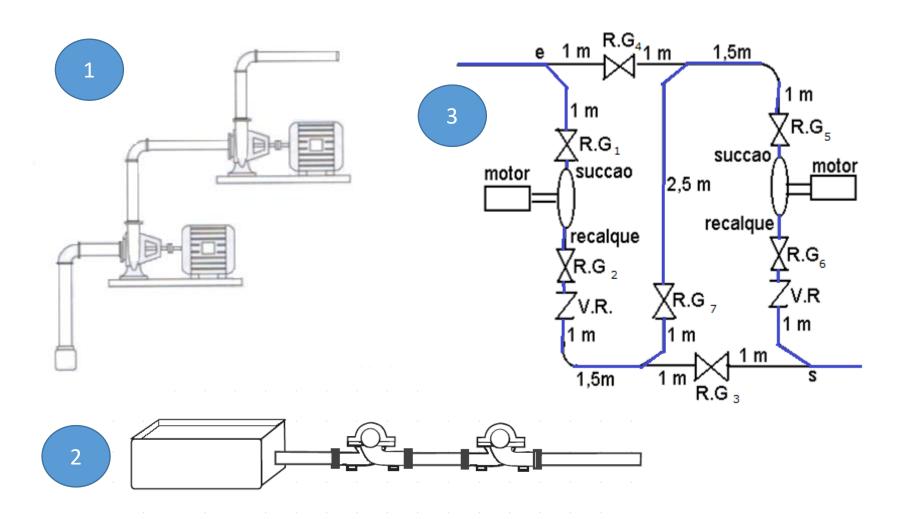
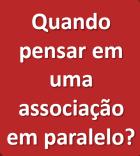

CASA DE MÁQUINA COM UMA BOMBA OPERANDO

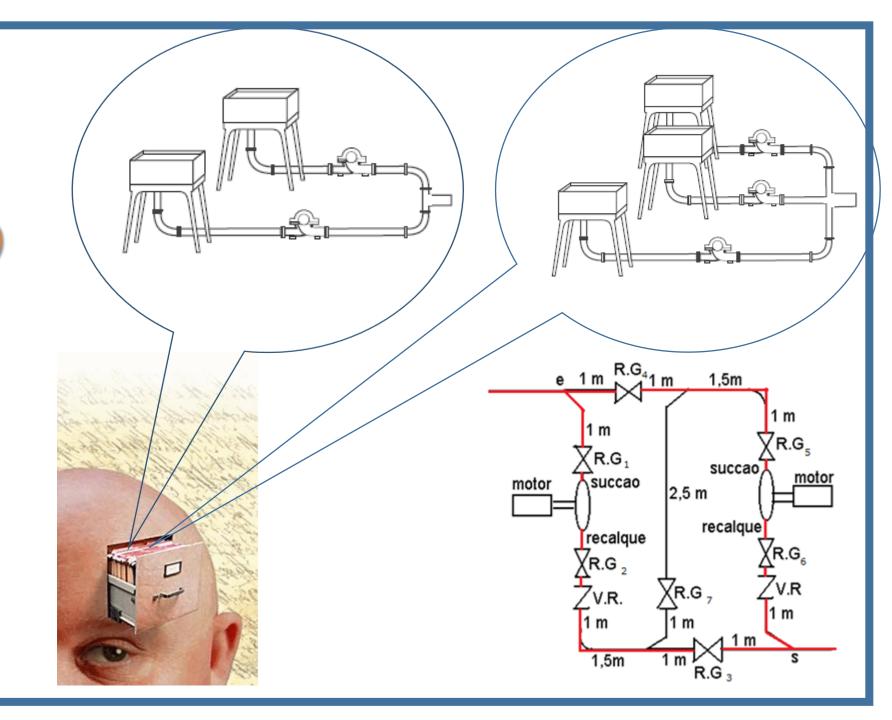
Aula 7 de Hidráulica 11


ASSOCIAÇÃO DE BOMBAS Quando pensar em uma associação em série?

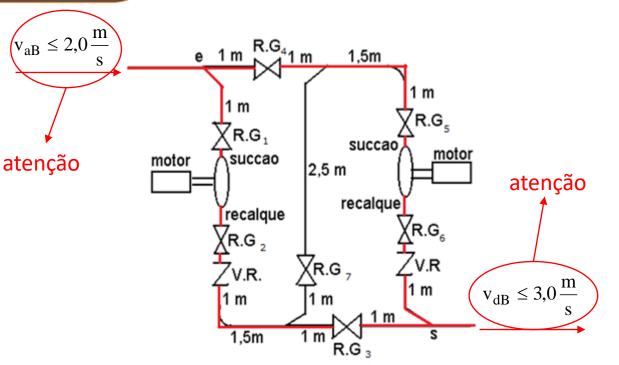


Quando existe a necessidade de aumentar a carga manométrica!

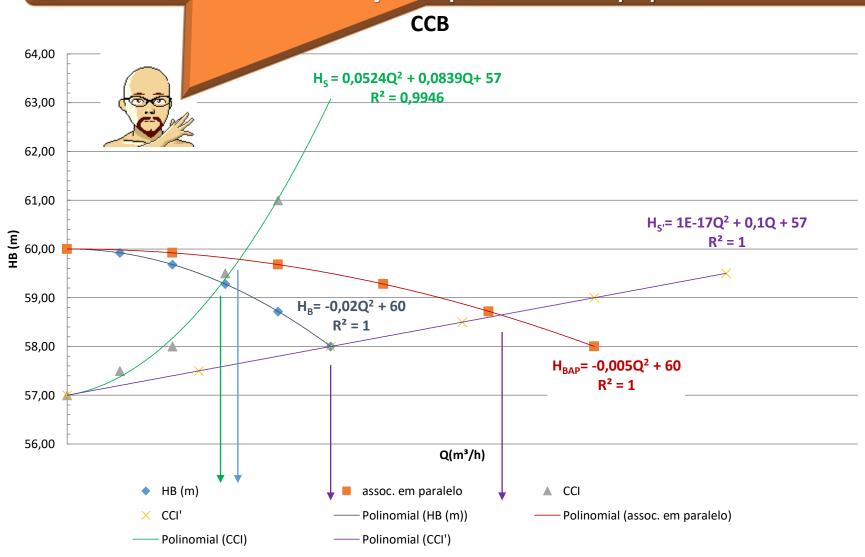
ASSOCIAÇÃO EM SÉRIE



Quando existe a necessidade de aumentar a vazão!



ASSOCIAÇÃO EM PARALELO



Aqui é importante se pensar na alimentação pela tubulação que causa menor perda de carga, pois se houver acentuadas perda de carga na linha, o aumento da vazão com duas ou mais bombas em paralelo será pequeno e pouco compensador.

A figura ao lado especifica as recomendações para as velocidades em uma associação em paralelo.

Observe que para a perda acentuada (CCI verde) a contribuição para o aumento da vazão na associação em paralelo é muito pequena.

Uma instalação de bombeamento transporta um fluido com viscosidade menor que 20 mm²/s e tem a sua CCI representada pela equação:

$$H_S = 20 + 36000 \times Q^2$$

com a vazão em m³/s e a carga do sistema em m, isto para <u>todas</u> as possibilidades de funcionamento das bombas idênticas que se encontram na casa de máquina.

Conhecendo os dados para obtenção das curvas $H_B = f(Q)$ e $\eta_B = f(Q)$, pede-se determinar a vazão, a carga manométrica, o rendimento e a potência mecânica para:

- a. o uso de uma única bomba;
- b. o uso da associação em série das duas bombas idênticas;
- c. O uso da associação em paralelo das duas bombas idênticas.

$H_{B}(m)$	70	60	50	40	30	20
$Q(m^3/h)$	0	75,6	122,4	154,8	176,4	190,8
$\eta_{\rm B}\left(\%\right)$	0	69	80	68	47	30

Uma bomba centrífuga com 3500 rpm apresenta as seguintes equações características de carga manométrica e rendimento:

$$H_{B} = -0.0098 \times Q^{2} - 0.2919 \times Q + 56.6 \rightarrow R^{2} = 0.9989 \rightarrow [H_{B}] = m \rightarrow [Q] = \frac{L}{s}$$

$$\eta_{B} = -0.1788 \times Q^{2} + 6.0189 \times Q + 1.4807 \rightarrow R^{2} = 0.9937 \rightarrow [\eta_{B}] = \% \rightarrow [Q] = \frac{L}{s}$$


Pede-se determinar:

- a equação de $H_{Bap} = f(Q_{ap})$ considerando a associação paralelo de duas bombas idênticas à descrita no enunciado;
- a equação de $H_{Bas} = f(Q_{as})$ considerando a associação série de duas bombas idênticas à descrita no enunciado;
- as equações de $H_B = f(Q)$ e $\eta_B = f(Q)$ quando a rotação da bomba for alterada para 1750 rpm.

Outro problema:

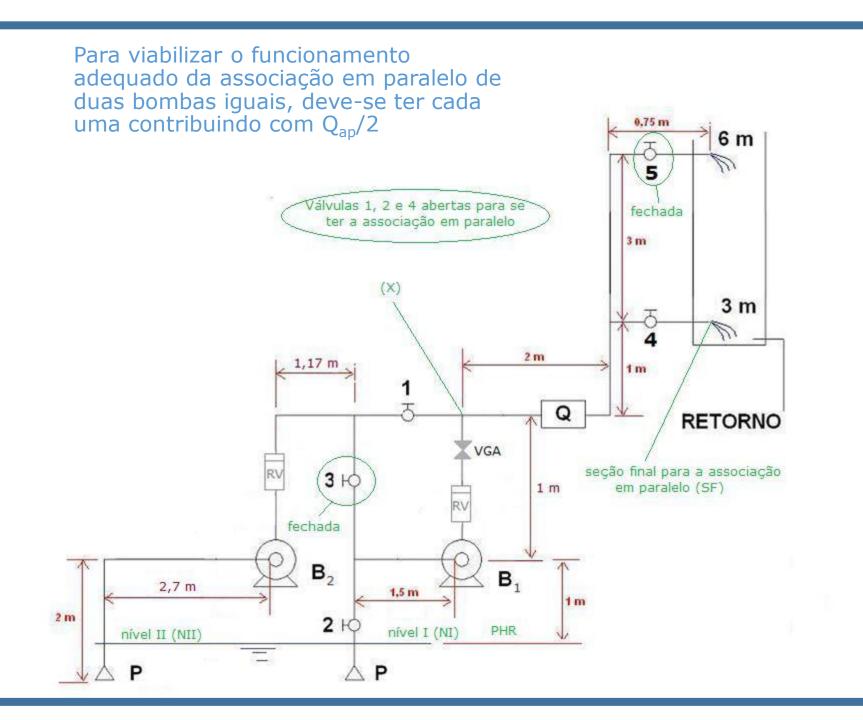
Considere a instalação ao lado, que pode operar só com uma bomba, com bombas associadas em série e paralelo.

Sabe-se que a tubulação é de aço 40 com um único diâmetro nominal de 1,5" (K=4,6e-5 m), que as válvulas são da MIPEL e os demais acessórios são da Tupy e que o medidor de vazão (**Q**) é um Venturi com comprimento equivalente igual a 4,36 m.

As singularidades 1, 2, 3, 4 e 5 são válvulas esferas de passagem plena, RV válvula de retenção vertical da MIPEL e VGA é válvula globo angular sem quia da MIPEL

0,75 m

5


3 m

1 m

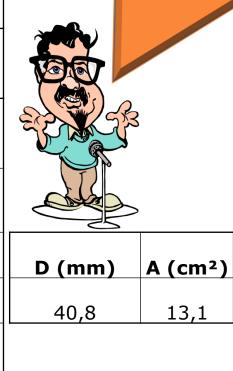
6 m

3 m

RETORNO

SÓ EXISTIRÃO VAZÕES
IGUAIS ATRAVÉS DAS
BOMBAS ASSOCIADAS
SE A PERDA DE CARGA
ANTES DAS MESMAS E
DEPOIS DELAS ATÉ O
PONTO QUE AS VAZÕES
SE SOMAM FOREM
IGUAIS!

Válvulas 3 e 5 fechadas


Válvulas 1, 2 e 4 abertas

Para demonstrar as condições anteriores, parte-se dos dados a seguir:

cingularidado	Log (m)
singularidade	Leq (m)
Válvula globo angular sem guia	4,88
válvula de pé com crivo	17,07
cotovelo de 90°	1,41
válvula de retenção	17,07
T de saída lateral	2,06
T de passagem direta	0,25
T de saída bilateral	2,50
válvula esfera	0,55
venturi	4,36
Saída de tub.	1,0

g (m/s²)

9,8

água	T (°C)	ρ (kg/m³)	998,2
	20	γ (N/m³)	9782,36
		ν (m²/s)	1,00E-06

Perdas de NI até a entrada da bomba B₁

$$H_{p_{\text{NI-eB}_1}} = f \times \frac{(3.5 + 17.07 + 0.55 + 2.06)}{0.0408} \times \frac{Q_1^2}{2 \times 9.8 \times (13.1 \times 10^{-4})^2}$$

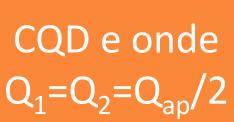
$$H_{p_{NI-eB_1}} = f \times 16890970,59 \times Q_1^2$$

Perdas de NII até a entrada da bomba B₂

$$H_{p_{\text{NII-eB}_2}} = f \times \frac{(4,7+17,07+1,41)}{0,0408} \times \frac{Q_2^2}{2 \times 9.8 \times (13,1 \times 10^{-4})^2}$$

$$H_{p_{NII-eB_2}} = f \times 16890970,59 \times Q_2^2$$

Perdas da saída da bomba B_1 até (X)


$$H_{p_{sB_1-X}} = f \times \frac{(1+17,07+4,88)}{0,0408} \times \frac{Q_1^2}{2 \times 9,8 \times (13,1 \times 10^{-4})^2}$$

$$H_{p_{sB_1-X}} = f \times 16723372,53 \times Q_1^2$$

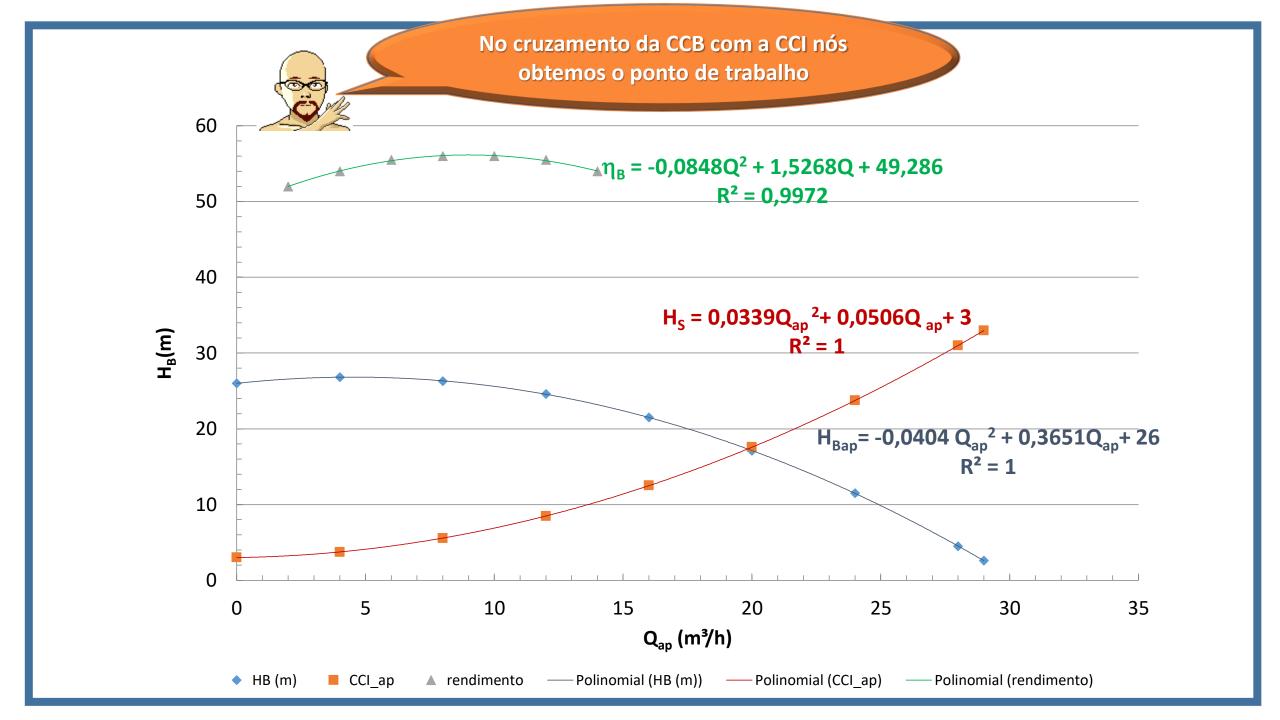
Perdas da saída da bomba B₂ até (X)

$$H_{p_{sB_2-X}} = f \times \frac{(1+17,07+1,41+1,17+0,25+0,55+1,5)}{0,0408} \times \frac{Q_2^2}{2 \times 9,8 \times (13,1 \times 10^{-4})^2}$$

$$H_{p_{sB_2-X}} = f \times 16723372,53 \times Q_2^2$$

CCB FABRICANTE				
Q (m³/h)	H _B (m)	η (%)		
0	26	_		
2	26,8	52		
4	26,3	54		
6	24,6	55,5		
8	21,5	56		
10	17,1	56		
12	11,5	55,5		
14	4,5	54		
14,5	2,6			

Obtendo a CCB



CCB FABRICANTE				
Q (m³/h)	Q _{ap} (m ³ /h)	H _B (m)	η (%)	
0	0	26	-	
2	4	26,8	52	
4	8	26,3	54	
6	12	24,6	55,5	
8	16	21,5	56	
10	20	17,1	56	
12	24	11,5	55,5	
14	28	4,5	54	
14,5	29	2,6		

Através da tabela abaixo nós podemos obter a representação gráfica da CCB e CCI

Q (m³/h)	Q _{ap} (m³/h)	H _B (m)	η (%)	HS (m)	
0	0	26	_	3,0	
2	4	26,8	52	3,7	
4	8	26,3	54	5,5	
6	12	24,6	55,5	8,5	
8	16	21,5	56	12,5	
10	20	17,1	56	17,6	
12	24	11,5	55,5	23,8	
14	28	4,5	54	31,0	
14,5	29	2,6		33,0	

DETERMINAÇÃO DO PONTO DE TRABALHO

$$H_S = H_{B_{ap}}$$

$$0.0339Q_{ap}^2 + 0.0506Q_{ap} + 3 = -0.0404Q_{ap}^2 + 0.3651Q_{ap} + 26$$

$$0.0743Q_{ap}^2 - 0.3145Q_{ap} - 23 = 0$$

$$Q_{ap_{\tau}} = \frac{0,3145 + \sqrt{0,3145^2 + 4 \times 0,0743 \times 23}}{2 \times 0,0743} \cong 19,84 \frac{m^3}{h} \approx 19,9 \frac{m^3}{h}$$

$$H_{B_{ap_{\tau}}} = 0.0339 \times 19.9^2 + 0.0506 \times 19.9 + 3 \cong 17.5 \text{ m}$$

$$\eta_{\rm B} = -0.0848 \times \left(\frac{19.9}{2}\right)^2 + 1.5268 \times \frac{19.9}{2} + 49.286 \cong 56.1\%$$

$$N_{B_{ap_{\tau}}} = \frac{9782,36 \times \left(\frac{19,9}{3600}\right) \times 17,5}{0,561} \cong 1686,9W$$

Determine o ponto de trabalho para a associação em série.

Válvulas 1, 2 e 4 fechadas

Válvulas 3 e 5 abertas

