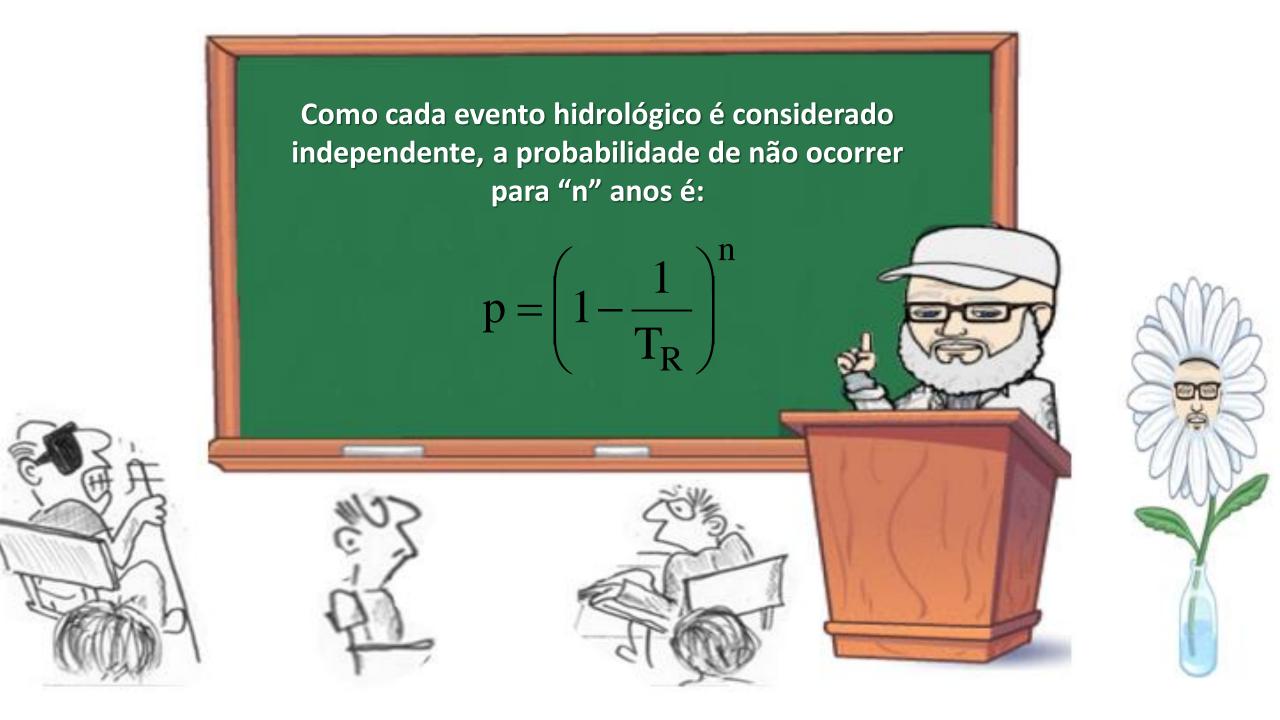

Para obras de macrodrenagem a Fundação Centro Tecnológico de Hidráulica e a Prefeitura Municipal de São Paulo no estudo denominado Diretrizes básicas para projetos de drenagem urbana no município de São Paulo, elaborado em 1998, adotou na página 188 o período de retorno de 100anos, já para a microdrenagem convém adotar período de retorno de 25anos e em pontos especiais, por exemplo onde existem hospitais, adota-se período de retorno de 50 anos.



Vamos refletir sobre Risco e frequência!

$$p = 1 - \left(1 - \frac{1}{T_R}\right)^r$$

Então o valor de P é considerado um risco hidrológico de falha , usando a letra R ao invés da letra p.

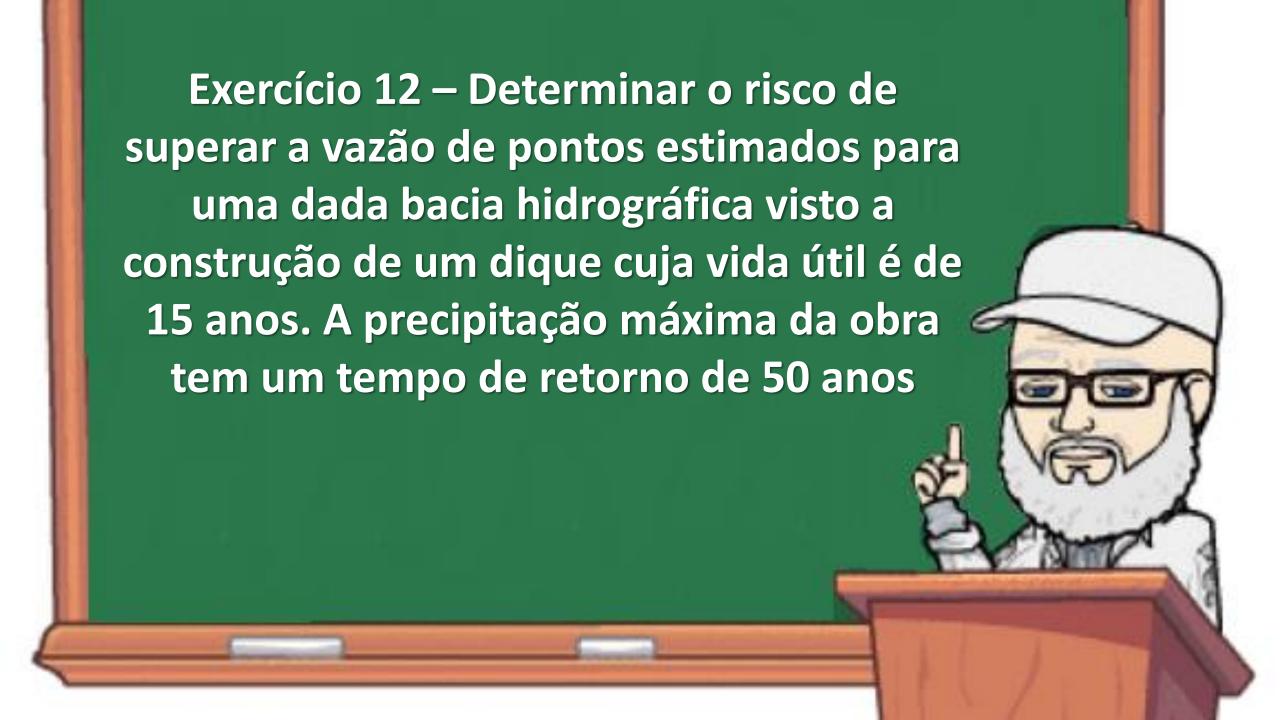
$$R = 1 - \left(1 - \frac{1}{T_R}\right)^n$$

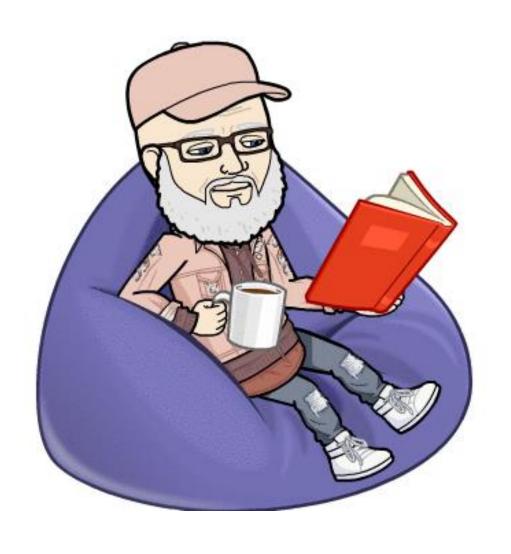
Conforme Righetto, 1998, a probabilidade de ocorrência de um evento que ponha em risco a obra e todo o sistema fluvial a jusante de uma barragem ao longo de um período de "n" anos de utilização das instalações ou vida útil, é definida como Risco "R" é expressa por:

RIGHETTO, A.M.
Hidrologia e recursos
hídricos . São Carlos:
EESC/USP, 1998

Sendo:

T_R= período de retorno (anos); n= número de anos de utilização das instalações ou vida útil; R= risco (entre zero e 1).





Exercício 11 – Complete a tabela

Tabela - Risco em função da vida útil e do período de retorno

Т	Vida útil da obra							
(anos)	2	5	25	50	100			
2								
5								
10								
25								
50								
100								
500								

Evocando o conceito de risco.

Risco é a probabilidade de que determinado acontecimento seja excedido pelo menos uma vez em "n" anos.

$$R = 1 - \left(1 - \frac{1}{T_R}\right)^n$$

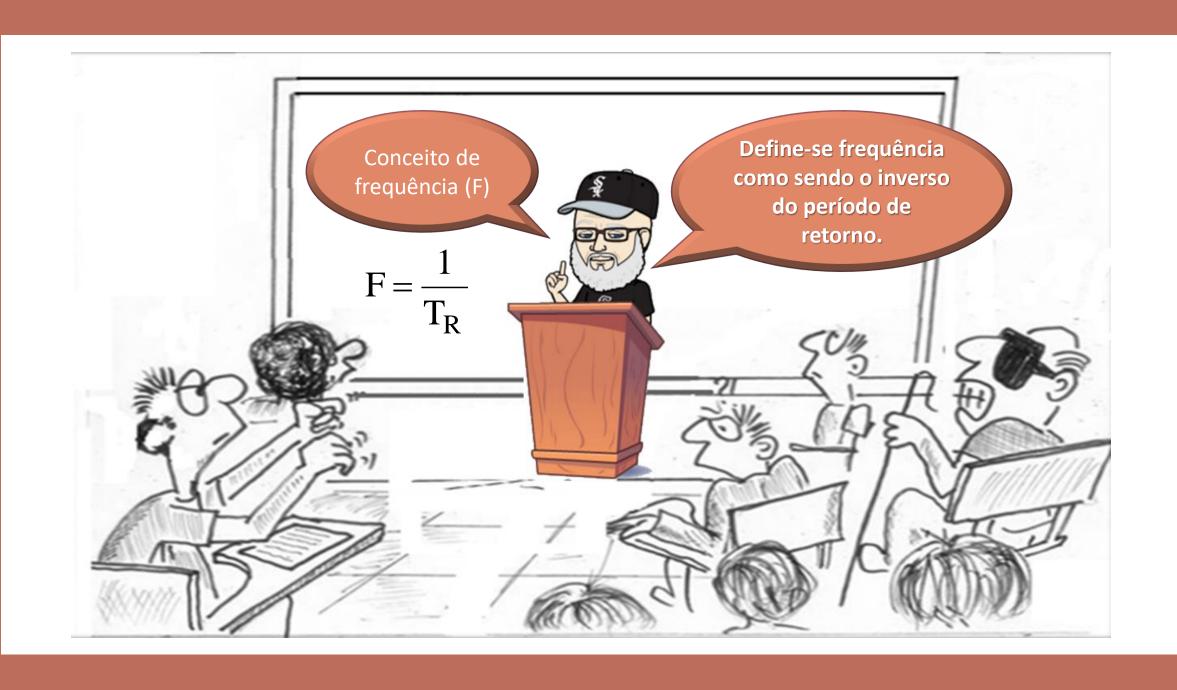
$$R = 1 - \left(1 - \frac{1}{T_R}\right)^n$$

$$R = 1 - \left(1 - \frac{1}{50}\right)^{15}$$

 $R \cong 26,1\%$

Essa é a probabilidade de ocorrer o evento nos 15 anos do dique.

DADOS: n = 15 anos e T_R =50 anos Exercício 13 – Qual é o risco de ocorrer chuva superior à crítica, nos próximos 5 anos sendo que foi considerado o período de retorno de 2 anos? Resp. R = 96,875%


Exercício 14 – Considerando o piscinão do Pacaembu, qual o risco de ocorrer uma chuva superior à critica em um ano, com período de retorno adotado de 25 anos? Resp. R = 4%

Exercício 15 - Qual o período de retorno para um risco de 50% em 5 anos? Resp. T = 7,725 anos

Exercício 16 - Qual o risco que a canalização do rio Tamanduateí na capital de São Paulo, falhe uma ou mais vezes considerando que o projeto foi efetuado para período de retorno de 500 anos e a vida útil da obra é de 50 anos? (EPUSP)

$$R = 1 - \left(1 - \frac{1}{T_R}\right)^n \rightarrow T_R = 500 \text{anos} \rightarrow n = 50 \text{anos}$$

$$R = 1 - \left(1 - \frac{1}{500}\right)^{50} = 1 - (0,998)^{50} \approx 0,0953 = 9,53\%$$

Uma análise simples e rápida de se fazer sobre os totais precipitados é verificar com qual frequência eles ocorreram historicamente, com base nos dados observados disponíveis.

Para tanto, os dados são dispostos em ordem decrescente de valores, sendo atribuído a cada um deles um número (m) correspondente a sua ordem – o primeiro (maior valor) recebe o valor m = 1, o segundo m = 2, e assim sucessivamente até o número de dados ou registros disponíveis, representado por n. O valor de m varia então de 1 até n.

E como calculamos a frequência?

A frequência (F) é determinada pelas equações a seguir, conforme se opte pelo método da Califórnia ou de Kimball: Convém ressaltar que o valor de F representa a frequência com que o valor da precipitação de ordem m foi igualada ou superada, tendo como fonte de informações a série de dados disponíveis.

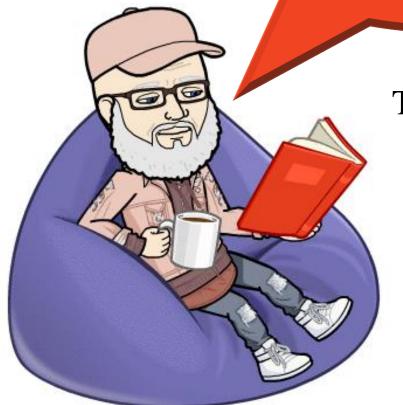
método de Kimball
$$\rightarrow$$
 F = $\frac{m}{n+1}$

Como já ressaltado, a precipitação é um fenômeno aleatório, de grande variabilidade temporal e espacial, e a estimativa da frequência F apenas dá uma ideia da probabilidade de ocorrência de cada valor da precipitação na área em estudo, havendo técnicas estatísticas mais complexas para realizar previsões mais confiáveis.

E nesse caso tendo a frequência podemos calcular o período de retorno que também é denominado de tempo de retorno, ou ainda, tempo de recorrência.

1. Probabilidade de excedência (evento extremo máximo), onde x_T é o evento associado e T_R o tempo de retorno ou recorrência

$$T_{R} = \frac{1}{p(X \ge x_{T})} = \frac{1}{1 - F(z)}$$

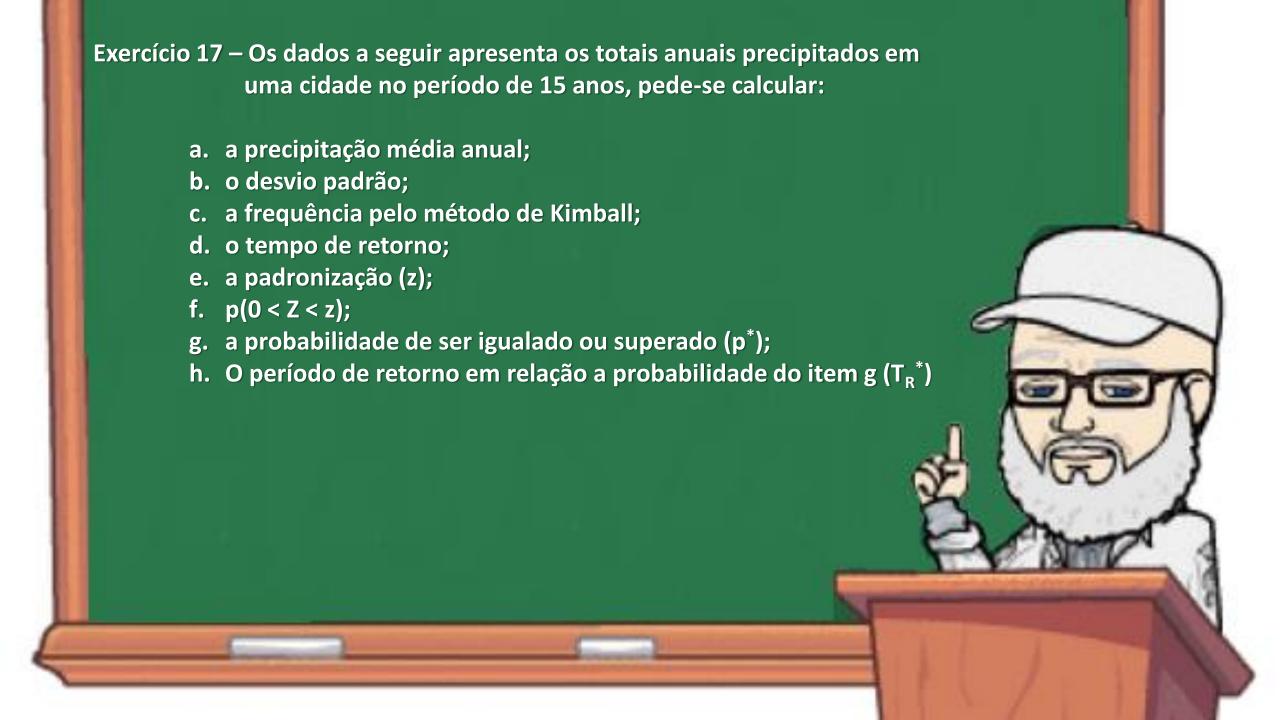

2. Probabilidade acumulada para eventos extremos mínimos

$$T_{R} = \frac{1}{p(X \le x_{T})} = \frac{1}{F(z)}$$

Determinação do tempo de retorno, ou recorrência em séries anuais:

Se considerarmos um evento de magnitude R, temos que o tempo de retorno é o tempo médio em que determinado evento é igualado ou superado elo menos uma vez .

$$X \ge R$$

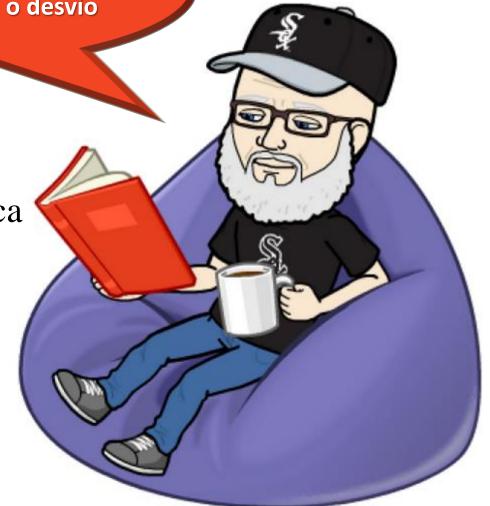

$$T_{R} = \frac{1}{p(X \ge R)}$$

Exemplo: uma chuva acontece acima de um determinado valor. A probabilidade dessa chuva ser igualada ou superada é de 5%. Calcule T_R.

$$T_{R} = \frac{1}{p(X \ge R)}$$

$$T_{\rm R} = \frac{1}{0.05} = 20$$
anos

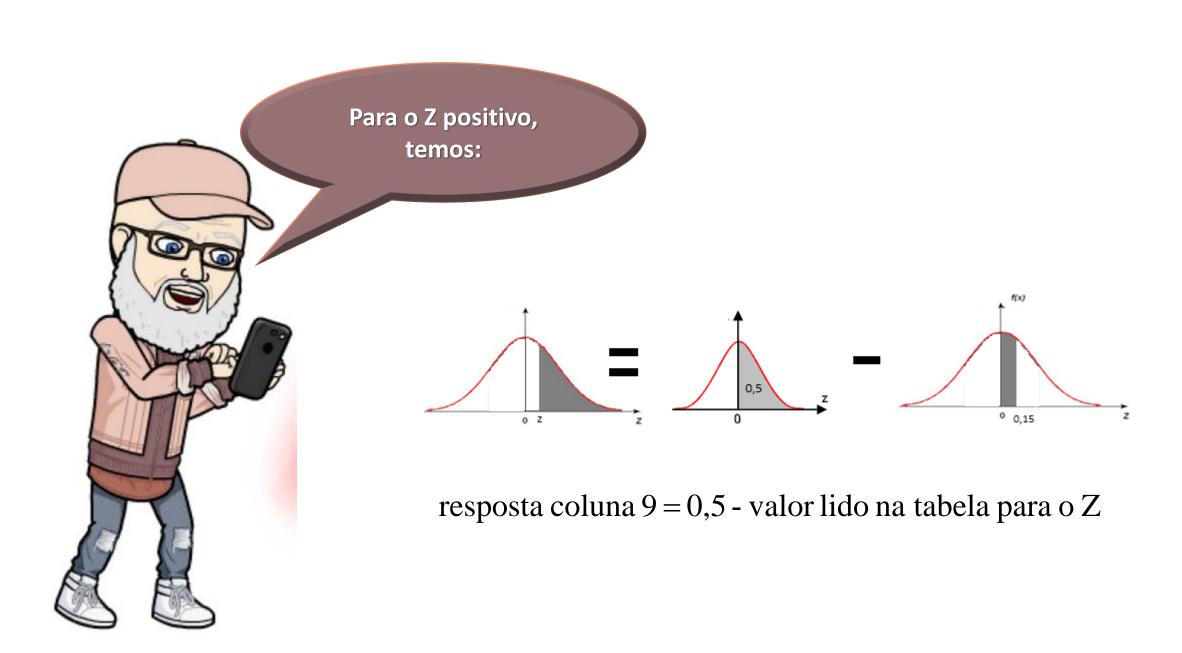
Significa que em média, há uma expectativa de ocorrência da chuva ser igualada ou superada uma vez a cada 20 anos.

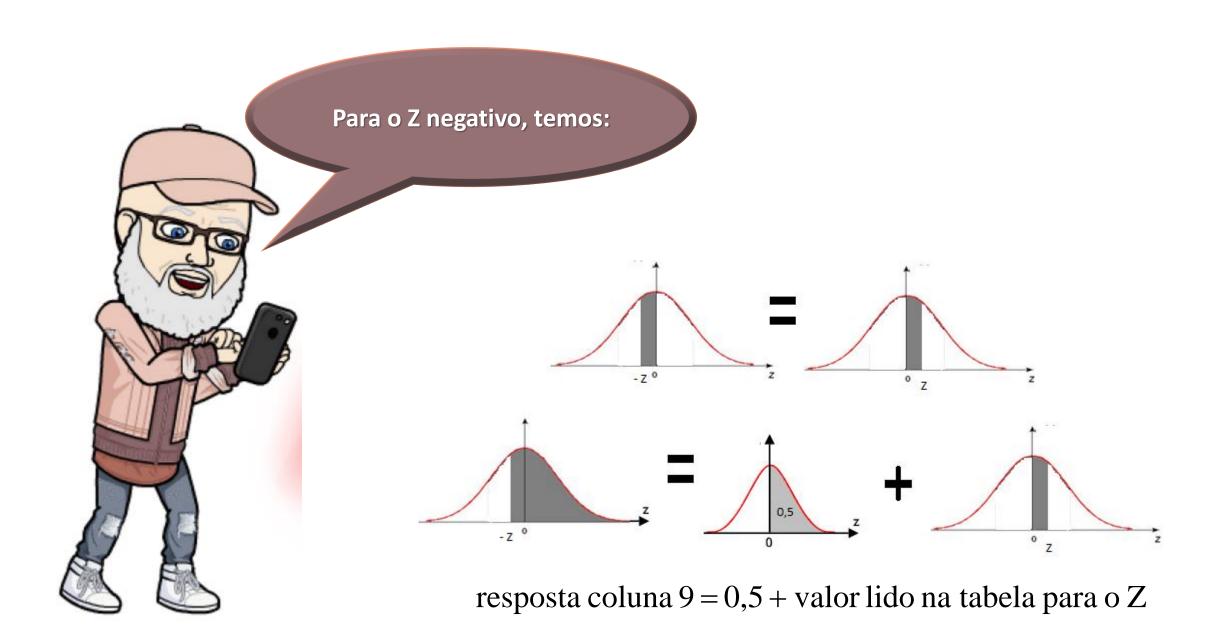


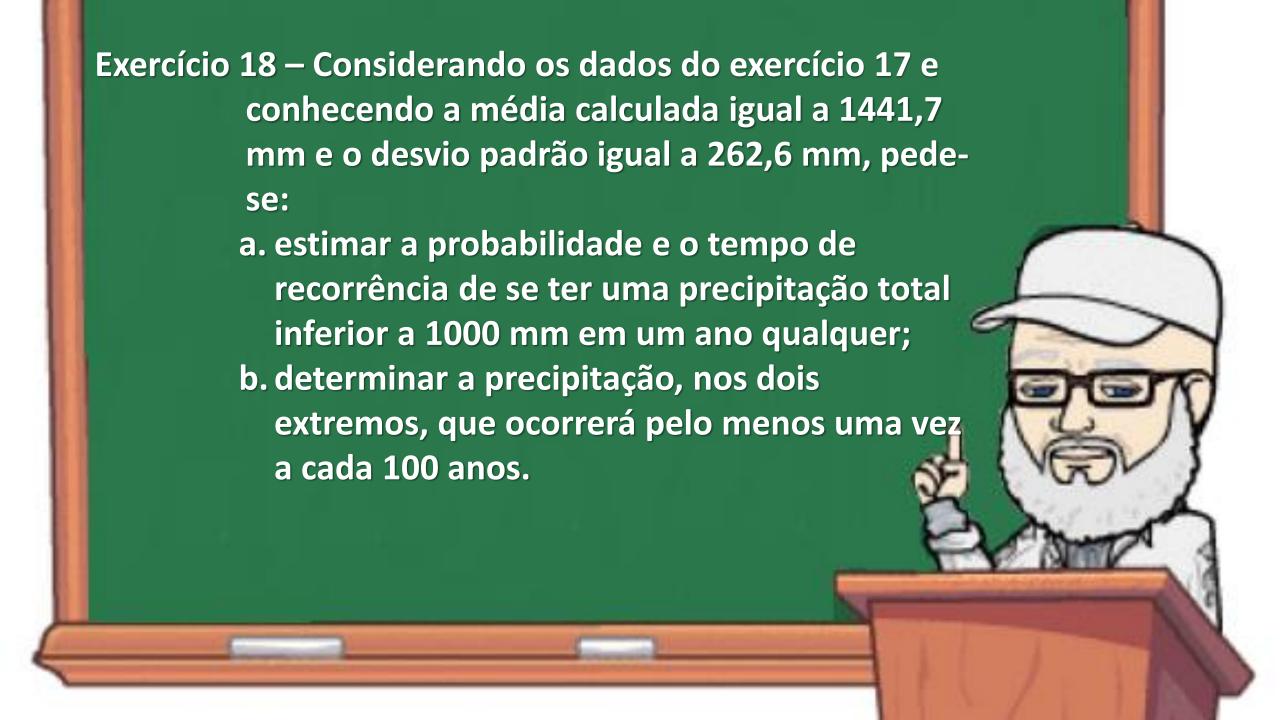
Ano	P(mm)
2000	1233,9
2001	1469,9
2002	1190,2
2003	1386,4
2004	1266,5
2005	1730,0
2006	1462,0
2007	2165,1
2008	1196,5
2009	1431,9
2010	1204,5
2011	1629,8
2012	1683,3
2013	1167,1
2013	1407,9

Aqui é fundamental trabalharmos com o Excel e lembrarmos como calculamos a média (μ) e o desvio padrão (σ)

 $\mu = \frac{\sum_{i=1}^{n} P_i}{n} \rightarrow \text{m\'edia aritm\'etica}$

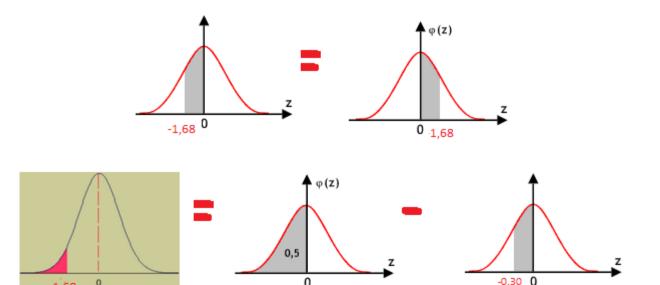

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (P_i - \mu)^2}{n-1}}$$




				F					
Ano	P(mm)	(xi - media)^2	ordem (m)	(Kimball) (m/(n+1)	$T_R = 1/F$	$z = (x-\mu)/\sigma$	tabela reduzida	p*	T_R^*
2007	2165,1	523355,7878	1	0,0625	16,00	2,75	0,4970	0,0030	333,33
2005	1730,0	83136,11111	2	0,1250	8,00	1,10	0,3643	0,1357	7,37
2012	1683,3	58386,66778	3	0,1875	5,33	0,92	0,3212	0,1788	5,59
2011	1629,8	35394,15111	4	0,2500	4,00	0,72	0,2642	0,2358	4,24
2001	1469,9	797,1211111	5	0,3125	3,20	0,11	0,0438	0,4562	2,19
2006	1462,0	413,444444	6	0,3750	2,67	0,08	0,0319	0,4681	2,14
2009	1431,9	95,38777778	7	0,4375	2,29	-0,04	0,0160	0,5160	1,94
2013	1407,9	1140,187778	8	0,5000	2,00	-0,13	0,0557	0,5557	1,80
2003	1386,4	3054,404444	9	0,5625	1,78	-0,21	0,0832	0,5832	1,71
2004	1266,5	30683,36111	10	0,6250	1,60	-0,67	0,2486	0,7486	1,34
2000	1233,9	43166,98778	11	0,6875	1,45	-0,79	0,2872	0,7872	1,27
2010	1204,5	56248,02778	12	0,7500	1,33	-0,90	0,3159	0,8159	1,23
2008	1196,5	60106,69444	13	0,8125	1,23	-0,93	0,3238	0,8238	1,21
2002	1190,2	63235,48444	14	0,8750	1,14	-0,96	0,3315	0,8315	1,20
2013	1167,1	75386,85444	15	0,9375	1,07	-1,05	0,3531	0,8531	1,17
média	1441,7	1034600,673							
desvio padrão	262,6								

n

15



a

$$p(x \le 1000) = p(z \le \frac{1000 - 1441,7}{262,6}) = F(z \le -1,68)$$

O item "a" refere-se a um evento extremo mínimo :

$$T_{R} = \frac{1}{p(X \le x_{T})}$$

$$p(x \le 1000) = F(z \le -1,68) = 0,5 - 0,4535 = 0,0465$$

$$T = \frac{1}{2150000}$$

$$T_{\rm R} = \frac{1}{0.0465} \cong 21,5$$
anos

b

$$T_R = \frac{1}{p(X \le x_T)} = 100 : p(X \le x_T) = \frac{1}{100} = 0,01$$

$$p(X \le x_T) = F(z) \Rightarrow F(z) = 0.01$$

Consultando a tabela de distribuição normal para z negativo (extremo mínimo), temos z= -2,33, portanto:

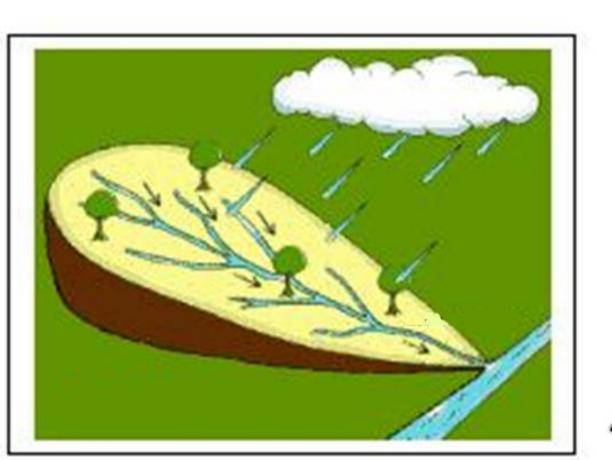
$$-2,33 = \frac{x - 1441,7}{262,6} \therefore x \cong 829,8 \text{mm}$$

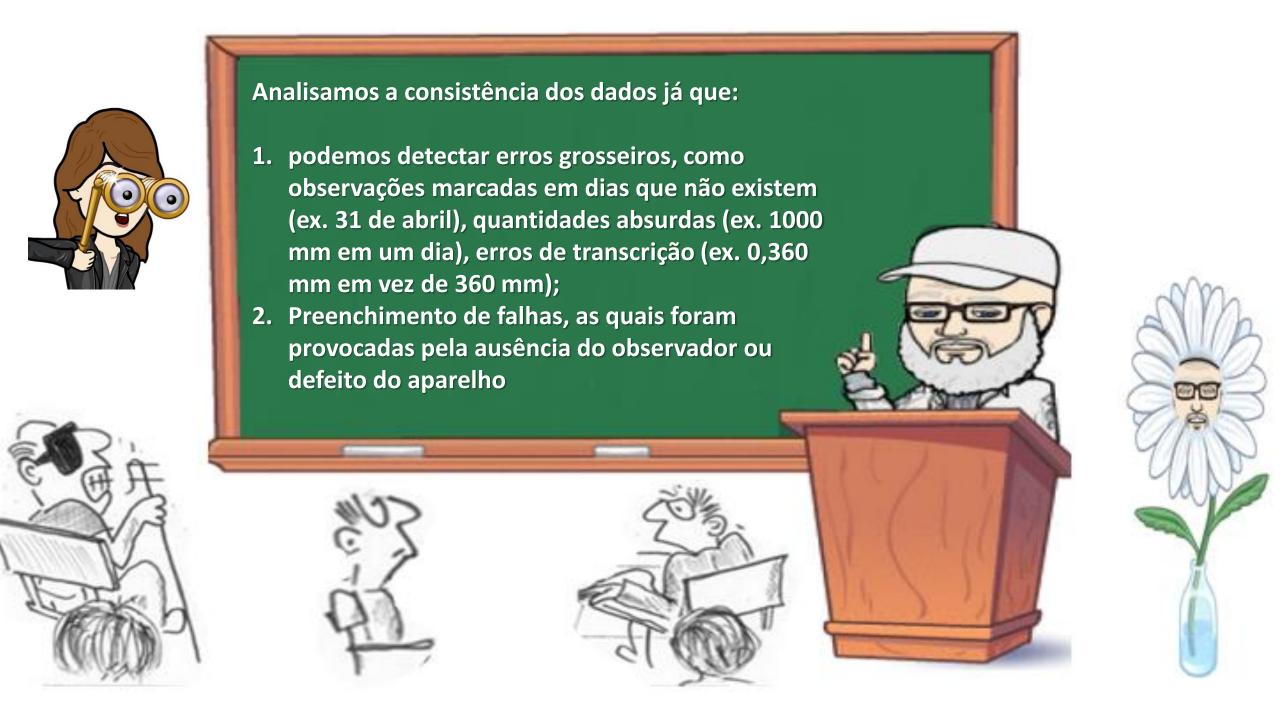
Poderá ocorrer pelo menos uma vez a precipitação menor ou igual a 829,8 mm num período de 100 anos

Outra possibilidade para o item b – extremo máximo

$$T_R = \frac{1}{p(X \ge x_T)} = 100 : p(X \ge x_T) = \frac{1}{100} = 0,01$$

$$p(X \ge x_T) = 1 - F(z) \Longrightarrow F(z) = 0.99$$


Consultando a tabela de distribuição normal para z positivo, temos z= 2,33, portanto:


$$2,33 = \frac{x - 1441,7}{262,6}$$
 $\therefore x \cong 2053,6$ mm

Poderá ocorrer pelo menos uma vez a precipitação maior ou igual a 2053,6 mm num período de 100 anos

Já que o objetivo maior é efetuar o balanço hídrico na bacia hidrográfica, onde a principal entrada é a precipitação na forma de chuva, é de suma importância analisar a consistência dos dados obtidos!

Nestas situações a falha pode ser preenchida pelo método das razões ponderadas, ou seja, localizamos os três (3) postos vizinhos e mais próximos e que não apresentam falhas e aplicamos a equação a seguir:

$$P_{x} = \frac{1}{3} \times \left(\frac{N_{x}}{N_{A}} \times P_{A} + \frac{N_{x}}{N_{B}} \times P_{B} + \frac{N_{x}}{N_{C}} \times P_{C} \right)$$

 P_x – é o valor da precipitação (chuva) que se pretende determinar.

N_x – é a precipitação média no período estudado do posto x.

 N_A , N_B e N_C – são, respectivamente, as precipitações médias dos posto vizinhos e sem falhas A, B e C no mesmo período de N_x .

PA, PB e PC – são, respectivamente, as precipitações observadas no "instante" que o posto X teve a falha.

Exercício 19 – Preencher a falha de dados ocorrida no mês de janeiro no ano de 2003 no posto A. Totais mensais dos meses de janeiro dos postos B, C e D, todos vizinhos ao posto em questão, no período de 1998 a 2008, são conhecidos.

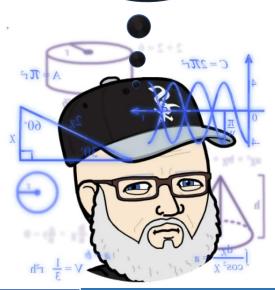
ANO	P _x (mm)	P _A (mm)	P _B (mm)	P _c (mm)
1998	117,4	157,3	249,6	224,8
1999	125,3	241,6	374,6	265,1
2000	131,8	250,9	267,6	261,2
2001	159,4	55,6	121,8	57
2002	52,4	158,9	85,4	95,4
2003		344	276,6	231,4
2004	64,2	39,3	81,8	21,3
2005	174	253,3	285,4	290,6
2006	137,8	64,7	150,2	201,2
2007	168,3	126,1	170,3	123,2
2008	255,5	249,5	339,3	285,1

ANO	P _X (mm)	P _A (mm)	P _B (mm)	P _C (mm)
1998	117,4	157,3	249,6	224,8
1999	125,3	241,6	374,6	265,1
2000	131,8	250,9	267,6	261,2
2001	159,4	55,6	121,8	57
2002	52,4	158,9	85,4	95,4
2003		344	276,6	231,4
2004	64,2	39,3	81,8	21,3
2005	174	253,3	285,4	290,6
2006	137,8	64,7	150,2	201,2
2007	168,3	126,1	170,3	123,2
2008	255,5	249,5	339,3	285,1
<mark>médias</mark>	138,61	176,47	218,42	186,94

$$P_{x} = \frac{1}{3} \times \left(\frac{N_{x}}{N_{A}} \times P_{A} + \frac{N_{x}}{N_{B}} \times P_{B} + \frac{N_{x}}{N_{C}} \times P_{C} \right)$$

$$P_{x} = \frac{1}{3} \times \left(\frac{138,61}{176,47} \times 344 + \frac{138,61}{218,42} \times 276,6 + \frac{138,61}{186,94} \times 231,4 \right)$$

$$P_{X} \cong 205,8 \text{mm}$$


Exercício 20 – Preencha as lacunas (3 falhas) abaixo pelo método das razões ponderadas

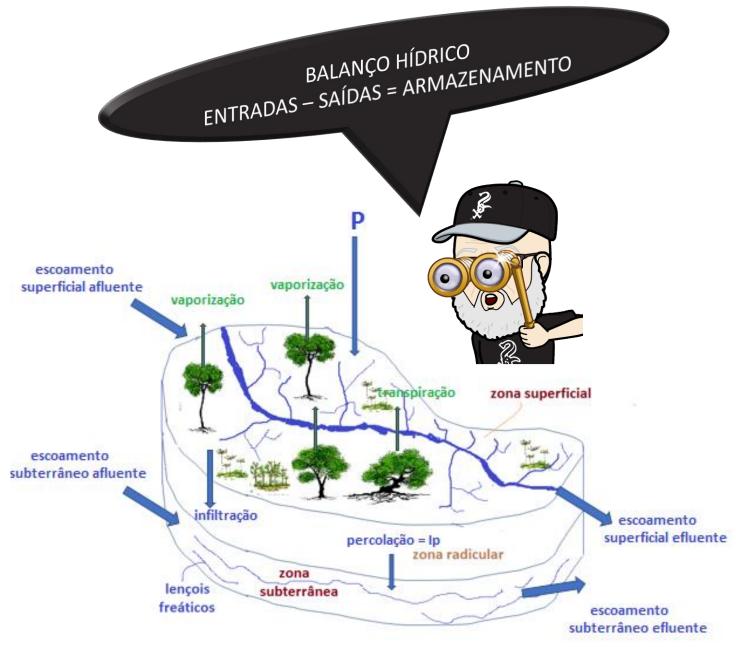
POSTOS	PRECIPITAÇÕES MÉDIAS ANUAIS (mm)									
	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006
Α	1050	1120	1085	1008	1285	1106	978	998	1087	1170
В	1215	1256	1098	1100		1208	1025	1018	1174	1210
С	1086	1170	1220	1038	1190	1160	1048	1150	1005	1120
D	1034	1095	1187	1236	1150	1140	1095	1005	1096	1165
Е	1190	1225	1205	1150	1125	1180	1030	1000	1110	1058

POSTOS	PRECIPITAÇÕES MÉDIAS ANUAIS (mm)									
	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Α	1030	995	1100	1278	990	975	980	955	950	882
В	1005	980	1085	1310	1105	1050	996	970	980	910
С	1087	1000	1070	1287	995	990	975	950	870	870
D	1210	1096	1100	1380	1077	1006	995	1010	980	925
E			1085	1375	1036	1028	1003	945	920	889

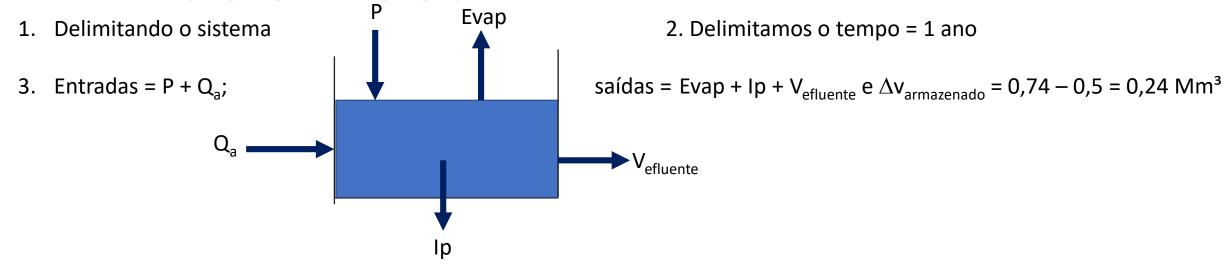
RESOLVENDO:

$$P_{B_{2001}} = \frac{1}{3} \times \left(\frac{1089,2}{1051,1} \times 1285 + \frac{1089,2}{1064,1} \times 1190 + \frac{1089,2}{1099,1} \times 1150 \right)$$

$$P_{E_{2007}} = \frac{1}{3} \times \left(\frac{1086,3}{1051,1} \times 1030 + \frac{1086,3}{1064,1} \times 1087 + \frac{1086,3}{1099,1} \times 1210 \right)$$


$$P_{E_{2008}} = \frac{1}{3} \times \left(\frac{1086,3}{1051,1} \times 995 + \frac{1086,3}{1064,1} \times 1000 + \frac{1086,3}{1099,1} \times 1096 \right)$$

POSTOS	Precipita			
PUSIUS	2001	2007	2008	médias
Α	1285	1030	995	1051,1
В		1005	980	1089,2
С	1190	1087	1000	1064,1
D	1150	1210	1096	1099,1
Е	1125			1086,3


POSTOS	Precipitações médias anuais (mm)						
	2001	2007	2008				
Α							
В	1229,8						
С							
D							
E		1123,4	1044,2				

- 1. Delimitamos o sistema
- 2. Delimitamos o tempo, onde para tempos maiores que um ano é comum desprezar o armazenamento.
- 3. Estudamos os termos da equação do balanço.
- 4. Estabelecemos a unidade de cálculo.
- 5. Cálculos e interpretações dos resultados.

Exercício 21 – No início de um dado ano o volume armazenado em um reservatório era 0,5 Mm³ e no final desse ano era 0,74 Mm³. A área superficial do reservatório é de 10 hectares (1 hectare = 10000m²). Sabendo que nesse ano a precipitação foi de 850 mm, que a vazão média afluente foi de 58,017 m³/h, o volume efluente foi de 0,092 Mm³, a percolação média no período avaliada em 0,1 Mm³, especifique a evapotranspiração (evaporação + transpiração) em mm.

- 4. Unidade de cálculo = m^3 , onde 1 $Mm^3 = 10^6 m^3$
- 5. Cálculos: $P = 850 \text{ mm} = 850 \text{ L/m}^2 = 0.85 \text{ m}^3/\text{m}^2$, portanto $V_p = 0.85 * 100000 = 85000 \text{ m}^3$

$$V_{afluente} = 58,017 *24 * 365 = 508228,92 \text{ m}^3$$
, portanto: P + Va - Evap - Ip - Ve_{flente} = $\Delta v_{armazenado}$

$$\Delta v_{armazenado} = 85000 + 508228,92 - V_{Evap} - 0,1*10^6 - 0,092*10^6 = 0,24*10^6$$
, portanto $V_{evap} = 161228,92 \text{ m}^3$

Exercício 22 — Numa bacia hidrográfica de 60 km² de área em relação a um dado ano hidrológico sabe-se que a precipitação média foi de 1400 mm, a evapotranspiração foi de 30 Mm³ e o escoamento direto médio na seção de referência, ou seja a vazão de efluente, foi de 4110 m³/h. Calcular o valor da percolação, ou seja, a infiltração profunda.

- 1. Delimitando o sistema.
- 3. Entrada = P; saídas = evapotranspiração
- 4. Fixando a unidade = m³
- 5. Cálculos:

2. Delimitando o tempo = 1 ano+ vazão do efluente + infiltração profunda

$$P = 1400 \text{mm} = 1400 \frac{L}{m^2}$$
 : $V_P = 1.4 \times 60 \times 10^6 \text{ m}^3$

$$V_{efluente} = 4110 \times 24 \times 365 = 36003600 \text{m}^3$$

$$P - V_{evap} - V_{efluente} = Ip \Rightarrow Ip = 17996400m^3$$
: $Ip = \frac{179964000m^3}{60 \times 10000000m^2}$

$$Ip \cong 0,29994m = 299,94mm$$

Exercício 23 – Num dado ano os dados hidrológicos relativos a uma dada bacia de drenagem de área igual a 50 km² são os seguintes: precipitação média 1200 mm, evapotranspiração mensal 50 mm e o aumento de água armazenada igual a 10 Mm³. Calcule a vazão média na seção de referência (de projeto) em m³/h.

