#### 4.14.1 Respostas dos exercícios

4.14.1 F – força

L – comprimento

T-tempo

### 4.14.2 São todas se excluindo F, L e T.

Equação dimensional é a maneira de definirmos a grandeza derivada em função das grandezas fundamentais.

- 4.14.3 [F] = F grandeza fundamental
  - $[A] = L^2$  grandeza derivada
  - $[\tau] = FL^{-2}$  grandeza derivada
  - [M] =F L grandeza derivada
  - $[v] = LT^{-1}$  grandeza derivada

  - $[\omega] = T^{-1}$  grandeza derivada  $[n] = T^{-1}$  grandeza derivada
  - $[g] = LT^{-2}$  grandeza derivada
  - $[\alpha] = T^{-2}$  grandeza derivada
  - $[\rho] = FL^{-4}T^2$  grandeza derivada
  - $[\gamma] = FL^{-3}$  grandeza derivada  $[\gamma_R] = F^0L^0T^0$

  - $[\mu] = FL^{-2}T$  grandeza derivada

  - $[v] = L^2T^{-1}$  grandeza derivada  $[Q] = L^3T^{-1}$  grandeza derivada  $[m] = FL^{-1}T^2$  grandeza derivada

  - $[Q_m] = FL^{-1}T$  grandeza derivada
  - $[Q_G] = FT^{-1}$  grandeza derivada
  - [H] = L grandeza fundamental
  - $[E_C]$  = FL grandeza derivada
  - [EPP<sub>O</sub>] = FL grandeza derivada
  - [W] = FL grandeza derivada
  - $[N] = FLT^{-1}$  grandeza derivada
  - [D] = L grandeza fundamental
  - [L] = L grandeza fundamental
  - [T] = T grandeza fundamental

### 4.14.4 a) É um número universal puro;

b) É o fenômeno ensaiado em laboratório, geralmente em escala não natural

c) É o fenômeno questionado, que inicialmente deseja-se obter informações sem recorrer à ensaios, geralmente representa o fenômeno na escala real.

4.14.5 
$$[\pi] = F^0 L^0 T^0$$

- 4.14.6 a) Não é já que sua equação dimensional é L<sup>-3</sup>T b) É já que se trata de um número puro
- 4.14.7 É a função que indica todas as variáveis que influenciam o fenômeno estudado.
- 4.14.8 a) Está correta a afirmação, já que n=4, K=3 e m=n-K=1
  - b) Sim desde que a base adotada seja μ v L
  - c) Não, já que  $\frac{L \times \lambda}{\mu}$  não é um número adimensional (número puro)
  - d) Sim, já que ambos são números puros
  - e) Não, já que a base deve ser formada por K variáveis independentes, que são aquelas que apresentam as equações dimensionais diferentes entre si de pelo menos uma grandeza fundamental.
  - f) Não, já que além da função característica estar incompleta, a combinação apresentada das variáveis não representa um número puro.
  - g) Aplicando-se o teorema dos  $\pi$ , demonstra-se que a afirmação está correta.

4.14.9 a) 
$$f(Q, p, m, E, D, \mu, N)=0$$

b) m = 4

c) 
$$\pi_1 = \frac{Q \times m}{\mu \times D^4}$$
;  $\pi_2 = \frac{D^3 \times p}{\mu \times Q}$ ;  $\pi_3 = \frac{E}{D}$ ;  $\pi_4 = \frac{D^3 \times N}{\mu \times Q^2}$ ;

4.14.10 a) 
$$f(E, p, \tau, \varepsilon, \mu, D, Q) = 0$$

b) m = 4

c) 
$$\pi_1 = \frac{E}{\mu \times Q}$$
;  $\pi_2 = \frac{\varepsilon^3 \times p}{\mu \times Q}$ ;  $\pi_3 = \frac{\varepsilon^3 \times \tau}{\mu \times Q}$ ;  $\pi_4 = \frac{D}{\varepsilon}$ 

d) 
$$\tau_p = 16 \ N/m^2$$

$$4.14.11 \quad v_m = 2 \ v_p$$

4.14.12 
$$K\mu = K\rho$$

4.14.13 a) 
$$K\gamma = 16$$
 e b)  $w_2 = 800$  kgf. m

4.14.14 a) 
$$K\rho = \frac{64}{3}$$
 e b)  $N_2 = 3$  CV

$$4.14.15$$
 Np = 1 CV

4.14.16 a) 
$$v_m = 1 \text{ m/s e b}$$
)  $Fp = 504,1 \text{ tonf}$ 

- 4.14.17 a) coeficiente manométrico e coeficiente de vazão e)  $\eta p = 76\%$
- 4.14.18 a)  $Qp = 108 \text{ l/s } e \text{ b}) \eta = 97,5 \text{ e } N_B = 1279,71 \text{ CV}$

$$4.14.19 \quad n = 1521 \text{ rpm}$$

4.14.20 a) 
$$\pi_1 = \frac{\Delta p}{\gamma \times L}$$
 e  $\pi_2 = \frac{L \times \nu}{Q}$  ; b)  $\Delta p_m = 1996 \text{ N/m}^2$  e c)  $\Delta p_p = 2395,2 \text{ N/m}^2$ 

4.14.21 a) 
$$\pi_1 = \frac{D \times \frac{\Delta p}{L}}{\rho \times v^2}$$
;  $\pi_2 = \frac{v}{v \times D}$  e c)  $h = 0.67$  m

4.14.22 a) a perda de carga ao longo do escoamento; b) 
$$\Delta p = 0$$
 e c)  $\pi_1 = \frac{f}{2}$  e  $\frac{\Delta p}{\gamma} = \pi_1 \times \frac{L}{D} \times \frac{v^2}{g}$ 

# Meta = sonho + data para realização

# Raimundo Ferreira Ignácio