
5.14.23 Se num escoamento laminar a carga cinética é 0,15 m, considerando o conduto forçado de seção transversal circular, qual é a velocidade média do escoamento?

RESPOSTA: V = 1,22 m/s

- 5.14.24 Sabendo-se que a viscosidade cinemática do fluido do exercício 5.14.22 é 10^{-6} m²/s e mantendo-se a vazão de escoamento, pede-se:
 - a) a carga cinética na seção de saída da tubulação considerando $\alpha = 2$ para o escoamento laminar e $\alpha = 1,058$ ou $\alpha = 1,0$ para escoamento turbulento;
 - b) qual o novo valor de h;
 - c) o que podemos concluir da resposta do ítem (b).
- 5.14.25 Considerando que $v = 10^{-6}$ m²/s para o exercício 5.14.11, recalcule a carga cinética de sucção e a carga cinética do recalque supondo que:
 - $\alpha = 2 \rightarrow$ parao escoamento laminar
 - $\alpha = 1,058 \text{ e } \alpha \simeq 1,0 \rightarrow \text{para o escoamento turbulento}$
- 5.14.26 Qual foi a diferença entre a carga cinética calculada com $\alpha = 1,058$ e $\alpha \cong 1,0$ para o exercício anterior? O que podemos concluir?
- 5.14.27 Para a instalação representada pela figura (VII), o nível do tanque leva 50 segundos para subir $\Delta h = 25$ cm . Sabe-se os valores da perda de carga, que são: Hpo e = 2m e Hps-1 = 2m e que as tubulações são todas de diâmetro D = 4cm $\rightarrow A = 12,5$ cm² e ainda que o rendimento da bomba é de 80 % . Pede-se:
 - a) a vazão em l/s;
 - b) a velocidade média da água nas tubulações em m/s;
 - c) o tipo de escoamento, sabendo-se que $v_{H2O} = 10^{-6} \text{ m}^2/\text{s}$;
 - d) a carga potencial, a carga de pressão e a carga cinética na entrada da bomba;
 - e) a carga potencial, a carga de pressão e a carga cinética na saída da bomba;
 - f) a potência da bomba;
 - g) a potência consumida da rede elétrica pelo motor elétrico sabendo-se que seu rendimento é de 90%;
 - h) o rendimento global do conjunto moto-bomba;
 - i) a carga potencial, a carga de pressão e a carga cinética na seção (1).

RESPOSTAS:

$$Q = 5 \text{ l/s}$$

$$V = 4 \text{ m/s}$$

$$\frac{p_s}{\gamma} = 12 \text{ m}$$

$$N_B = 1,4 \text{ CV}$$

$$Z_e = 2 \text{ m}$$

$$Nm = 1,56 \text{ CV}$$

$$\frac{V_e^2}{2g} = 0.8 \text{ m}$$

$$\eta_g = 72\%$$

$$Z_1 = 12 \text{ m}$$

$$\frac{p_e}{\gamma} = -4.8 \text{ m} \qquad \qquad \frac{p_1}{\gamma} = 0$$

$$Z_s = 2 \text{ m}$$

$$\frac{V_s^2}{2g} = 0.8 \text{ m}$$

$$\frac{V_1^2}{2g} = 0.8 \text{ m}$$