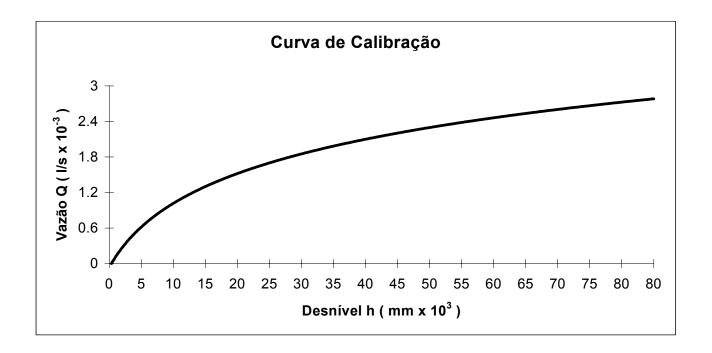
Medidor de vazão: Venturi ou Placa de Orifício?

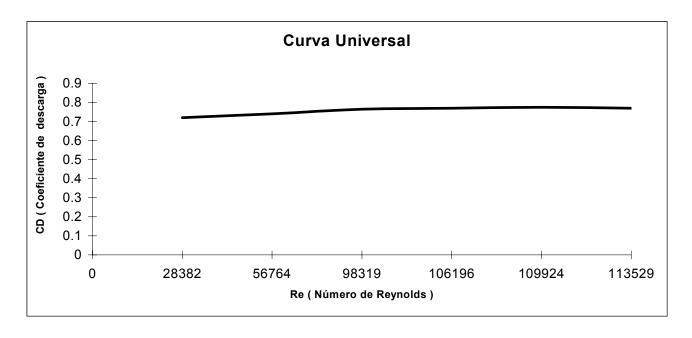
No primeiro semestre de 2001 os alunos abaixo entregaram o relatório a seguir como sendo o relatório de medidores de vazão.

Turma: 248

Grupo: Mário Henrique Suzuki n° 001407-6

José Roberto de Freitas n° 992098-4 Robson n° 992410-1 Rogério Teshima n° 001474-6

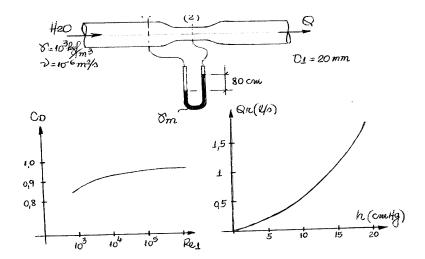

Considerando na sua bancada a vazão máxima pergunta-se:


- 1) as tabelas estão corretas? Justificar considerando uma linha completa.
- 2) Explique o que vem a ser o "k" da tabela de resultados e verifique se seu valor está correto.
- 3) Considerando a curva de calibração, qual a vazão máxima que você determinaria?
- 4) E pela curva característica qual o valor que você obteria da vazão máxima?
- 5) As soluções apresentadas dos exercícios estão corretas?

Δh mm 100 200 100 200 150 50 50 t s 19,87 38,3 20,13 41,53 34,01 20,09 41,7	Dados para Experiência Medição de Vazão											
t s 19,87 38,3 20,13 41,53 34,01 20,09 41,7	Ensa	aios	1	2	3	4	5	6	7	8		
	Δh	mm	100	200	100	200 150 50 50 0						
h mm 80 80 75 70 60 20 5	t	S	19,87	38,3	20,13	41,53	34,01	20,09	41,7	0		
	h	mm	80	80	75	70 60 20 5 0						
Peso Específico $H_2O = 1000 \text{ Kgf} / \text{mm}^3$ Área do tanque = 0,546 m ²	Peso Esp	ecífico H	$I_2O = 100$	0 Kgf/n	nm ³	Área do tanque = 0.546 m^2						
Viscosidade cinemática = 10^{-6} m ² /s $D_1 = 40,89$ mm	Viscosidade cinemática = 10 ⁻⁶ m ² /s					$D_1 = 40.89 \text{ mm}$						
Peso Especifico mmHg = $13600 \text{ Kgf}/\text{mm}^3$ $D_2 = 25.42 \text{ mm}$ (Venturi)	Peso Especifico mmHg = 13600 Kgf / mm ³					$D_2 = 25.42 \text{ mm (Venturi)}$						
$g = 9.8 \text{ m/s}^2$ $D_0 = 29.75 \text{ mm (Orificio)}$	$g = 9.8 \text{ m/s}^2$					$D_0 = 29,75 \text{ mm (Orificio)}$						

Medição de	. Vazão	Tabela de Desenvolvimento								
Grandezas	Δh	t	Q	h	CD	V1	Re1			
Ensaios	m	s	l/s	mm	-	m/s	-			
1	0,1	19.87	2.748	80	0.76	2.776	113529			
2	0,2	38.3	2.851	80	0.76	2.776	113529			
3	0,1	20.13	2.712	75	0.77	2.688	109924			
4	0,2	41.53	2.629	70	0.77	2.597	106196			
5	0,15	34.01	2.408	60	0.76	2.404	98319			
6	0,05	20.9	1.306	20	0.72	1.388	56764			
7	0,05	41.7	0.655	5	0.72	0.694	28382			
8	0	0	0	0	0	0	0			
	TIPO		K= 0,01289							

Gráfico da Experiência



Ex.9
Para o Venturi da figura são dadas as curvas abaixo.

Um engenheiro deseja medir a vazão de uma instalação , mas não tem mercúrio (Υ_{Hg} = 13600 Kgf/ m³). Utiliza , então , no manômetro diferencial , um fluído imiscível com água , que tem Υ_{m} = 2600 Kgf/ m³, obtendo a configuração da figura . Pede-se :

a- a vazão real;

b- a vazão teórica.

$$\begin{split} P_{1}\text{--} & P_{2} = h_{m} \, (\, \gamma_{m} \text{--} \, \gamma_{H_{2}O}) \\ P_{1}\text{--} & P_{2} = 0.8 \, . \, (2600 - 1000) \\ P_{1}\text{--} & P_{2} = 1280 \; Kgf \, / \, m^{2} \end{split}$$

$$\begin{split} P_{1}\text{--} & \ P_{2} = h_{hg} \left(\ \gamma_{hg} \text{--} \ \gamma_{H_{2}O} \right) \\ 1280 & = h_{hg} \, . \ (13600 - 1000) \\ h_{h} & = \ \underline{1280} \ = 0,101 \ mhg = 10,1 \ cmhg \\ 12600 \end{split}$$

no gráfico

$$h_{cmhg} \Rightarrow Q_r$$

 $10,1 = 0,6 \text{ l/s}$

$$Q_r = 0.6 \text{ l/s}$$

$$Q_r = 0.6 \text{ l/s} = 0.0006 \text{ m}^3/\text{s}$$

$$Q_r = v_1 \cdot A_1$$

$$A_1 = \frac{\Pi D^2}{4} = 3.1416 \cdot 10^{-4} \text{ m}^2$$

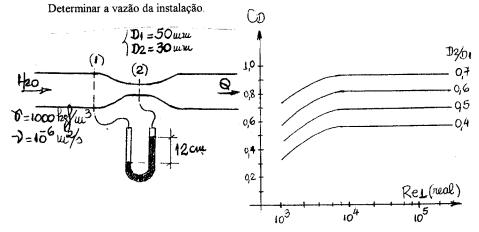
$$v_1 = \frac{0.6}{3.1416 \cdot 10^{-4}} = 1.9 \text{ m/s}$$

$$R_e = v_{1.}D_{1.} = 1.9 \cdot 0.02$$
 $v_{0.} = 10^{-6}$

$$R_e = 38000$$

no gráfico

$$CD \Rightarrow 0.94$$


$$CD = \frac{Q_r}{Q_t}$$

$$Q_t = \frac{0.6}{0.94} = 0.638 \text{ l/s}$$

$$Q_t = 0.64 \text{ l/s}$$

Ex.10 (Ref.: Exp.5)

Os Venturis semelhantes ao da figura apresentam as curvas universais dadas abaixo. Pelo desenvolvimento teórico e considerando-se o fluido como ideal, chega-se à seguinte equação: $Q=0.011\sqrt{h}$ (onde, h em metros, Q em m^3/s).

$$R_e = v_1 \cdot D_1 = 1.94 \cdot 0.05$$
 0

$$R_e = 97000$$

no gráfico
$$\underline{D_2} = \underline{30} = 0,6 \text{ com} \quad R_e = 97000$$
 $\underline{D_1} = \underline{50}$

$$CD \Rightarrow 0.8$$

$$CD = Q_r \over Q_t$$

$$\begin{split} Q_t &= 0,00381 \text{ l/s} \\ Q_r &= 0,8 \text{ . } 0,00381 \\ Q_r &= 0,00305 \text{ m}^3/\text{s} \end{split}$$

$$Q_r = 3.05 \text{ 1/s}$$