Objetivo da quarta aula da unidade 7:

Resolver os exercícios: 7.12.14 item a) e 7.12.16

Objetivo da quinta aula da unidade 7:

Introduzir os conceitos de cavitação e supercavitação.

Desenvolver a condição para não se ter a supercavitação.

Mencionar os cuidados preliminares a serem adotados desenvolvimento de um projeto para não se ter o fenômeno de cavitação.

Introduzir o conceito do NPSH e a condição necessária e suficiente para não se ter o fenômeno de cavitação.

Propor os exercícios: 7.12.23 a 7.12.31

7.8 Cavitação

Nesta unidade, apresentamos o fenômeno de cavitação observado em instalações de bombeamento.

Para que possamos compreender o fenômeno de cavitação, consideramos um trecho de uma dada instalação de bombeamento representado pela figura 7.2, onde calculamos a pressão na entrada da bomba.

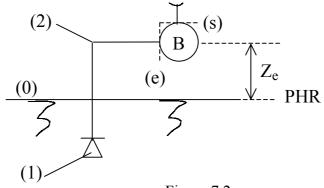


Figura 7.2

Aplicando a equação da energia de (0) a (e),temos:

$$p_{e} = -\gamma \cdot \left(Ze + \frac{v_{e}^{2}}{2g} + Hp_{sucção} \right)$$
 equação 7.6

Através da temperatura de escoamento do fluido, com auxílio de um manual de termodinâmica, podemos determinar a pressão de vapor - p_{Vapor} (tensão de vapor), que representa a pressão que para a temperatura de escoamento, teríamos a mudança de líquido para vapor em um processo isobárico.

Se a $p_{e_{abs}}$ ($p_e + patm$) for menor ou igual a p_{vapor} , temos o fenômeno de evaporação à temperatura de escoamento, que é denominado de *cavitação*.

Notas:

- 1 o O fenômeno de cavitação observado na entrada da bomba $(p_{e_{abs}} \le p_{vapor})$ é denominado geralmente de *supercavitação* e é considerado um erro grosseiro do projetista.
- 2 → A pressão na entrada da bomba não representa o ponto de menor pressão do escoamento, este ocorre no interior do corpo da bomba, o que equivale a dizer que o fato de <u>não</u> ocorrer o fenômeno de cavitação na entrada da bomba <u>não</u> garante que o mesmo não ocorra em seu interior.

Ao considerar as figuras 7.3.a e 7.3.b, verificamos que a bolha de vapor ao ser lançada na direção do difusor da bomba, onde a energia total é maior e a pressão maior que a pressão atmosfera, esta irá sofrer a condensação repentina com grande liberação de energia, ocorrendo a penetração do fluido nos espaços vazios do material (função do tamanho dos grãos) do rotor, podendo promover o "arrancamento" de grãos.

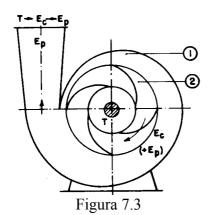


Figura 7.3.b

Nota: (1) – carcaça da bomba e (2) é o seu rotor.

O fenômeno de cavitação, geralmente propicia os seguintes problemas:

 $1^{\circ} \rightarrow eros\tilde{a}o$

 $2^{\circ} \rightarrow vibrações$

3° → diminuição do rendimento

 $4^{\circ} \rightarrow$ diminuição do tempo vida da bomba ...

As figuras 7.4 e 7.5 mostram rotores de turbina e de bomba, respectivamente, que foram submetidos ao fenômeno de cavitação durante um dado período.

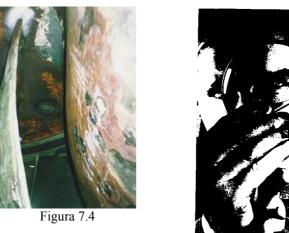
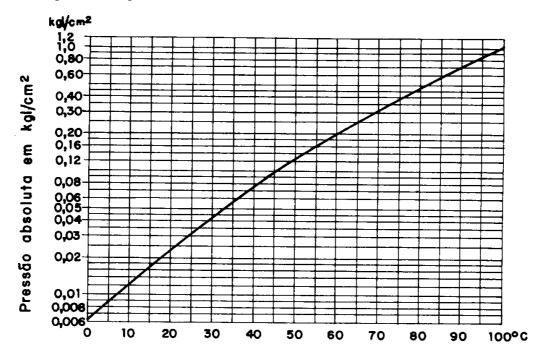



Figura 7.5

Pelo fato do fenômeno de cavitação poder comprometer todo o projeto de uma instalação de bombeamento alguns cuidados preliminares devem ser tomados para evitá-lo, cuidados estes baseados na equação 7.6, onde objetiva-se trazer a p_e o mais perto possível da p_{atm} , ou até mesmo superior a ela.

Nota: O gráfico¹ a seguir fornece as pressões de vapor, na escala absoluta, para a água em temperaturas de 0° C a 100° C

Os cuidados adotados para procurar-se evitar o fenômeno de cavitação são:

- $1^{\circ} \rightarrow$ a bomba deve ser instalada o mais perto possível do nível de captação com a finalidade de diminuir z_{e} , ou, se possível, a bomba deve ser instalada abaixo do nível de captação (bomba "afogada") com isto $z_{e} < 0$.
- $2^{\text{o}} \to \text{a}$ tubulação de sucção deve ser a menor possível com a finalidade de diminuir a $H_{p_{\text{sucção}}}$.
- $3^{\circ} \rightarrow$ na tubulação de sucção devem ser usados os acessórios estritamente necessários com a finalidade de diminuir a $H_{p_{succão}}$.

¹ O gráfico foi extraído do livro Bombas e Instalações de Bombeamento (página 198)

- $4^{\rm o} \to {\rm o}$ diâmetro de sucção deve ser um diâmetro superior ao diâmetro de recalque com a finalidade, tanto de diminuir a carga cinética de entrada da bomba, quanto diminuir $H_{p_{succão}}$.
- 5° → o ponto de trabalho da bomba deve estar o mais próximo do ponto de rendimento máximo.

Nota: Por questão de economia, sempre que possível, não se considera o cuidado 4º mencionado acima, já que quanto maior o diâmetro maior o custo da tubulação.

7.9 Verificação do Fenômeno de Cavitação

Como mencionado no item anterior a condição de $p_{e_{abs}} > p_{vapor}$ não é suficiente para garantir a não existência fenômeno de cavitação. Por este motivo, introduzi-se um novo parâmetro denominado de N P S H \equiv Net Positive Suction Head, ou A P L S \equiv Altura Positiva Líquida de Sucção, ou Altura de Sucção Absoluta; e que representa a disponibilidade de energia que o líquido penetra na boca de entrada da bomba e que lhe permitirá atingir o bordo da pá do rotor.

Existem dois NPSH, um fornecido pelo fabricante que é denominado de NPSH_{requerido} e o calculado pelo projetista que é o NPSH_{disponível}.

Para a verificação do fenômeno, devemos lembrar que:

- 1° → O NPSH da figura 7.6 representa o NPSH requerido
- $2^{\circ} \rightarrow A$ equação 7.7 possibilita o calculo do NPSH_{disponível}, onde a condição necessária e suficiente para que não ocorra o fenômeno de cavitação é: NPSH_{disponível} > NPSH_{requerido}, ou NPSH_{disponível} NPSH_{requerido} = reserva contra a cavitação.

Para refletir: VIDA²

Há alguns anos, nas olimpíadas especiais de Seattle, nove participantes, todos com deficiência mental ou física, alinharam-se para a largada da corrida dos 100 metros rasos. Ao sinal, todos partiram, não exatamente em disparada, mas com vontade de dar o melhor de si, terminar a corrida e ganhar.

Todos, com exceção de um garoto, que tropeçou no asfalto, caiu rolando e começou a chorar. Os outros oito ouviram o choro. Diminuíram o passo e olharam para trás. Então eles viraram e voltaram. Todos eles.

Uma das meninas, com Síndrome de Down, ajoelhou, deu um beijo no garoto e disse: "- Pronto, agora vai sarar". E todos os nove competidores deram-se os braços e andaram juntos até a linha de chegada. O estádio inteiro levantou e os aplausos duraram muitos minutos. E as pessoas que estavam ali, naquele dia, continuam repetindo essa história até hoje.

Talvez os atletas fossem deficientes mentais... Mas, com certeza, não eram deficientes da sensibilidade...

Por que?

Porque, no fundo, todos nós sabemos que o que importa nesta vida é mais do que ganhar sozinho.

O que importa nesta vida é ajudar os outros a vencer, mesmo que isso signifique diminuir o passo e mudar de curso...

Pensem nisso e tenham um dia diferente...

² Autor desconhecido, ou se alguém o conhecer me envie a informação <u>rferig@cci.fei.br</u>

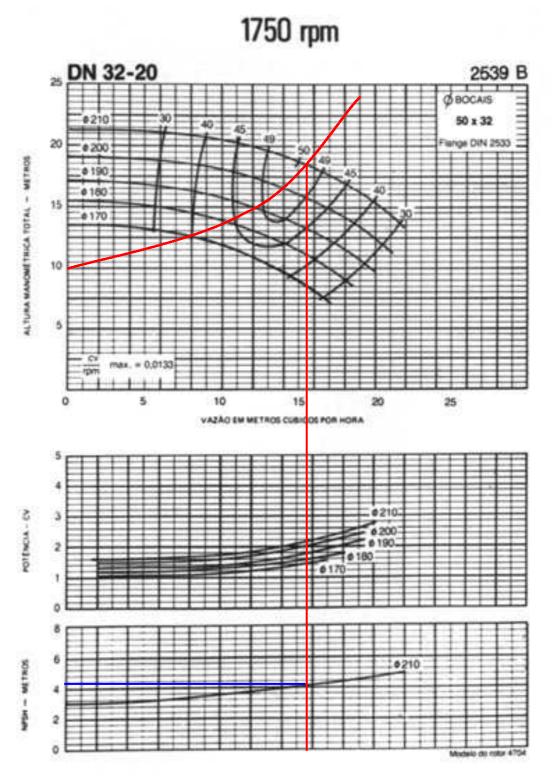


Figura 7.6

$$NPSH_{disponível} = NPSH_d = H_{e_{abs}} - \frac{p_{vapor}}{\gamma}$$

$$NPSH_d = H_{0_{abs}} - H_{p_{sucção}} - \frac{p_{vapor}}{\gamma}$$

$$NPSH_d = Z_0 + \frac{p_{o_{abs}} - p_{vapor}}{\gamma} - fs \cdot \frac{\left(Ls + \sum Les\right)}{D_H} \cdot \frac{v_S^2}{2g}$$
 equação 7.7

onde:

 $Z_0 \rightarrow$ obtido com o PHR adotado no eixo da bomba:

 $v_S \rightarrow velocidade$ média de sucção obtida com a vazão do ponto de trabalho.

Notas:

- 1ª → Não é nosso objetivo "esgotar" o assunto sobre cavitação, mesmo porque este texto é básico.
- 2ª → Existem fórmulas especificas dos fabricantes para a determinação do NPSH_{requerido} para exemplificar este fato fornecemos a fórmula comumente utilizada pela Sulzer:

$$NPSH_{requerido} = NPSH_{r} = (0.3 \cdot a \cdot 0.5) \times n \times \sqrt{Q}$$
, onde:

$$n \to em \; rps \; e \; Q \to em \; \frac{m^3}{s}$$

3ª → Mencionamos a seguir alguns materiais que na ordem crescente resistem ao fenômeno de cavitação:

 $F^oF^o o Alumínio o bronze o aço fundido o aço doce laminado o bronze fosforoso o bronze manganês o aço-cromo o ligas de aço inoxidável especiais.$

4ª → Atualmente recorre-se a *elastômeros* (neoprene, poliuretano), que são aplicados na forma líquida, aderindo ao metal e aumentando sua resistência a cavitação. Alguns podem, até ser usados na recuperação de rotores cavitados, outro método é através da solda elétrica e em seguida esmerilha-se o rotor.

Nota: Existem situações onde não temos o NPSH requerido, que é um parâmetro fundamental para verificarmos o fenômeno de cavitação, nestas situações podese recorrer ao *fator de cavitação* $(\sigma \cdot ou \cdot \theta)$, que também é denominado de fator de cavitação de Thoma³ e através dele determina-se o NPSH requerido, já que:

$$NPSH_{requerido} = \sigma \times H_{B}$$

equação 7.8

O fator de cavitação de Thoma pode-se ser determinado em função da rotação específica⁴:

$$n_{S} = 3,65 \times \frac{n \times \sqrt{Q}}{\sqrt[4]{H_{R}^{3}}}$$
equação 7.9

onde:

n = rotação da bomba em rpm

Q = vazão do ponto de trabalho em $\frac{m^3}{a}$

H_B= carga manométrica no ponto de trabalho em m

 n_S = rotação específica em rpm

Com a rotação específica na figura 7.7 (gráfico de Stepanoff⁵), obtemos o *fator* de cavitação de Thoma e com ele podemos determinar o NPSH requerido pela equação 7.8.

³ Homenagem ao pesquisador Dieter Thoma

⁴ Um excelente parâmetro para se especificar o tipo de rotor que propicia um bom rendimento, para tal consulte o livro Bombas e Instalações de Bombeamento – página 171 a 183

⁵ Ibidem – página 193

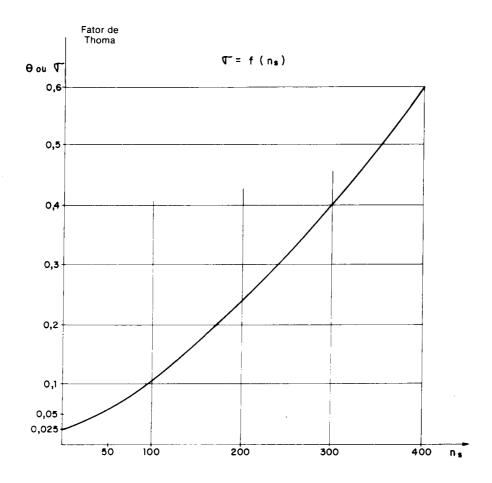


Figura 7.7 É importante salientar que existem outras maneiras de determinarmos o *fator de cavitação de Thoma e uma excelente fonte de consulta é o livro* Bombas e Instalações de Bombeamento – páginas 192 a 194.

