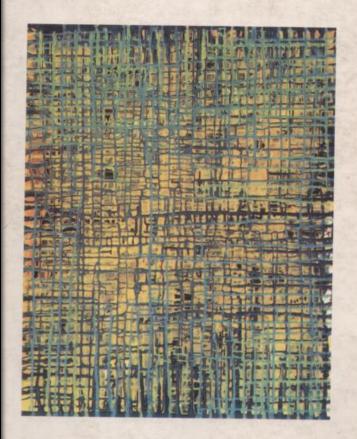
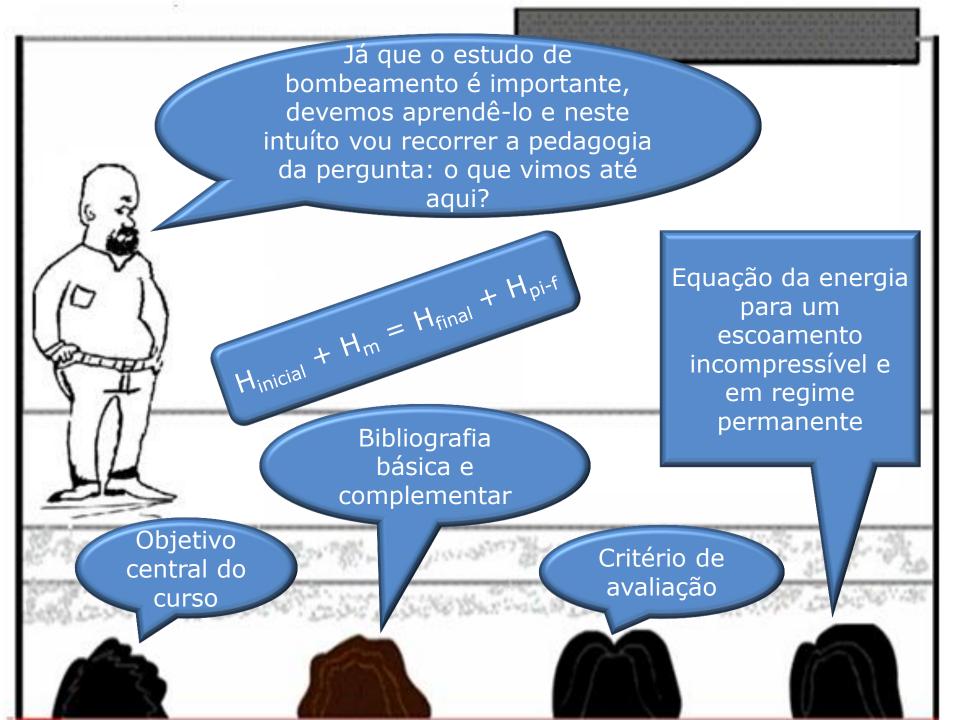


Será realmente importante na engenharia química o estudo de bombeamento dos fluidos?


Uma homenagem ao professor Gomide que nos deixou em janeiro de 2013

OPERAÇÕES COM FLUIDOS


REYNALDO GOMIDE

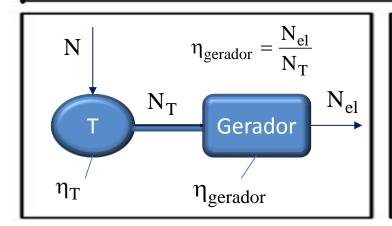
Respondendo através do professor Gomide

BOMBEAMENTO DE LÍQUIDOS

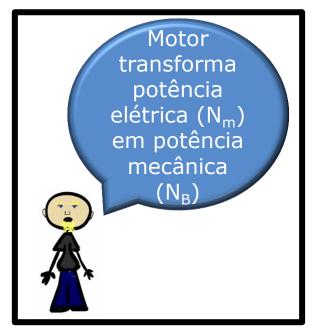
Os fluidos em movimento são a essência dos processos industriais de hoje. Daí a importância dos dispositivos destinados a movê-los ou que por eles são movidos. As tubulações, e por isso a própria unidade produtiva, seriam inoperantes sem esses equipamentos. Trata-se das bombas, ventiladores, sopradores, compressores, bombas de vácuo e uma variedade de outros dispositivos.

O engenheiro químico não os projeta, mas deve saber selecioná-los dentre os tipos e modelos padronizados oferecidos pelos fabricantes para poder especificá-los com acerto. Isto requer familiarização com as características de funcionamento dos tipos gerais existentes. Será útil lembrar que a tecnologia fundamental vem progredindo ao longo dos anos para acompanhar o desenvolvimento da indústria de processo químico, de modo a atender às crescentes necessidades de desempenho, segurança, proteção ambiental e economia. Este fato recomenda uma atualização constante do engenheiro de processo nesta área.

1. Em um trecho sem máquina o fluido sempre escoa da maior carga para a menor carga


2. A máquina pode ser uma turbina (retira carga do fluido) ou bomba (fornece carga para o fluido).

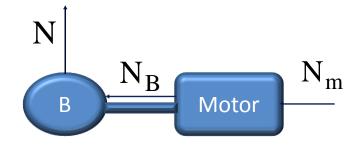
Até aqui também estudamos:



$$\boldsymbol{H}_{m} = -\boldsymbol{H}_{T} \qquad \boldsymbol{\eta}_{global} = \boldsymbol{\eta}_{T} \times \boldsymbol{\eta}_{gerador}$$

Turbina transforma potência hidráulica (N) em potência mecânica (N_T), já o gerador transforma potência mecânica em elétrica (N_{el}).

$$N = \gamma \times Q \times H_T \qquad \qquad \eta_T = \frac{N_T}{N}$$



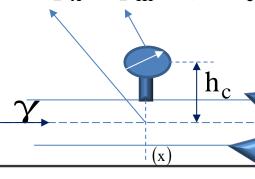
$$N = \gamma \times Q \times H_{B}$$

$$\eta_{m} = \frac{N_{B}}{N_{m}}$$

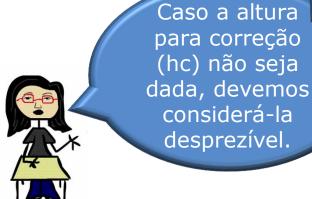
$$\eta_{B} = \frac{N}{N_{B}}$$

$$\eta_{global} = \eta_m \times \eta_B = \frac{N}{N_m}$$

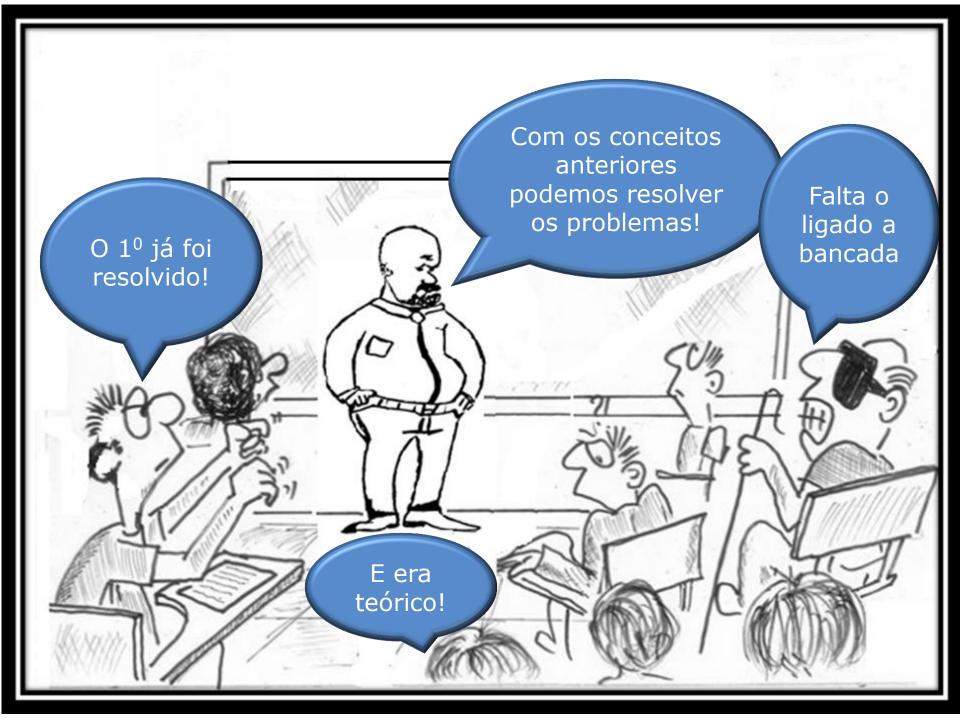
O único trecho que não consideramos a perda de carga na equação da energia é entre a entrada e a saída da máquina, isto porque a perda já é considerada em seu rendimento.

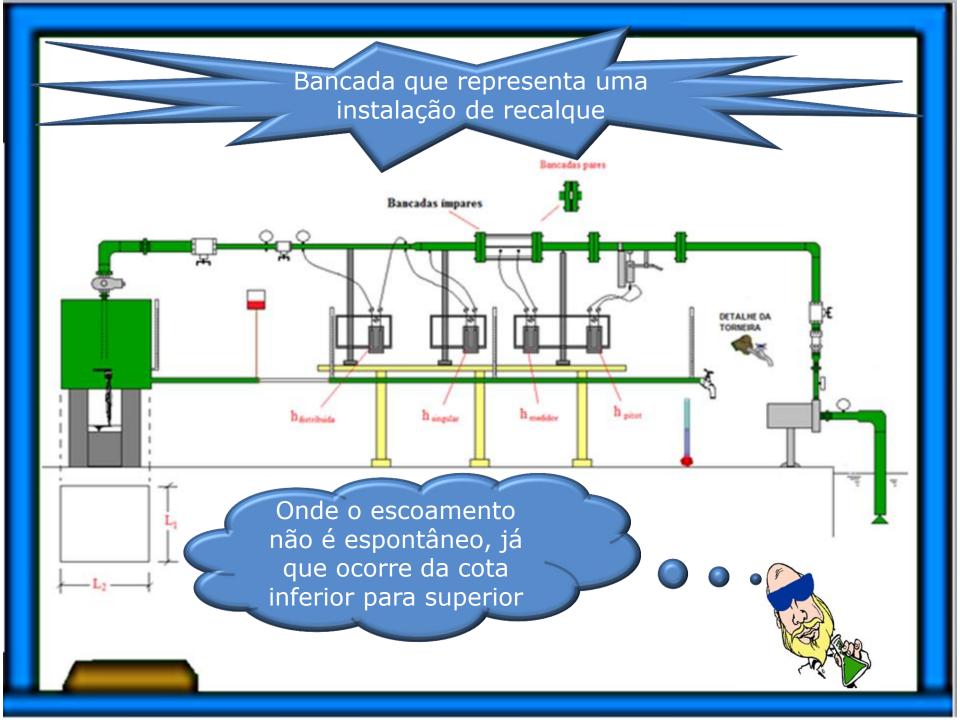

$$H_{e}-H_{T}=H_{s} \rightarrow H_{e}+H_{B}=H_{s}$$

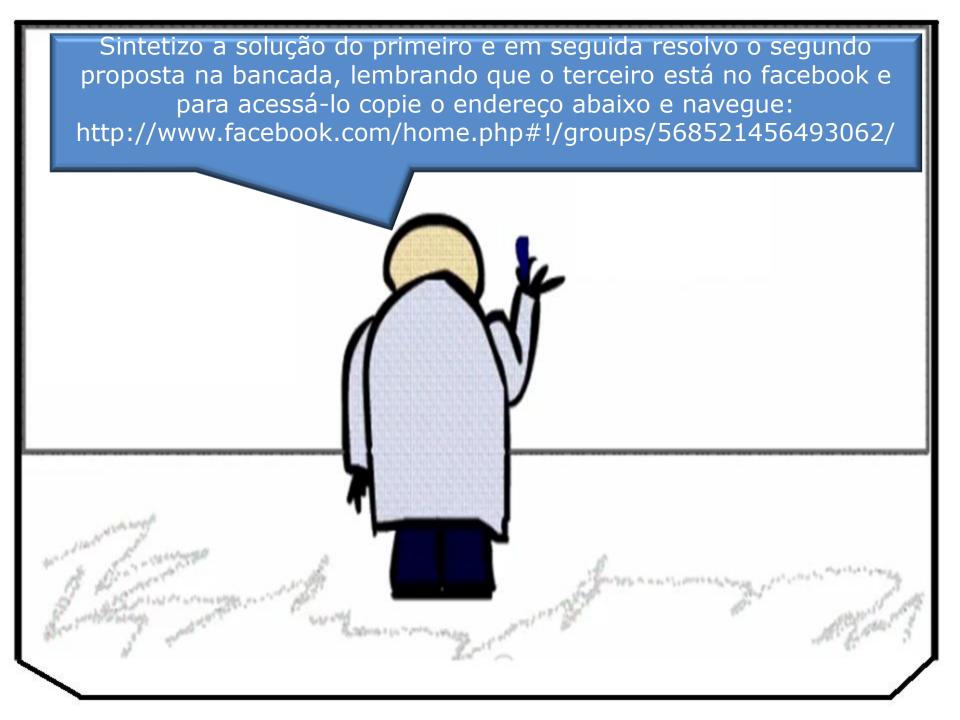
Muitas vezes temos que corrigir a pressão lida no manômetro metálico para determinarmos a pressão em uma seção do escoamento

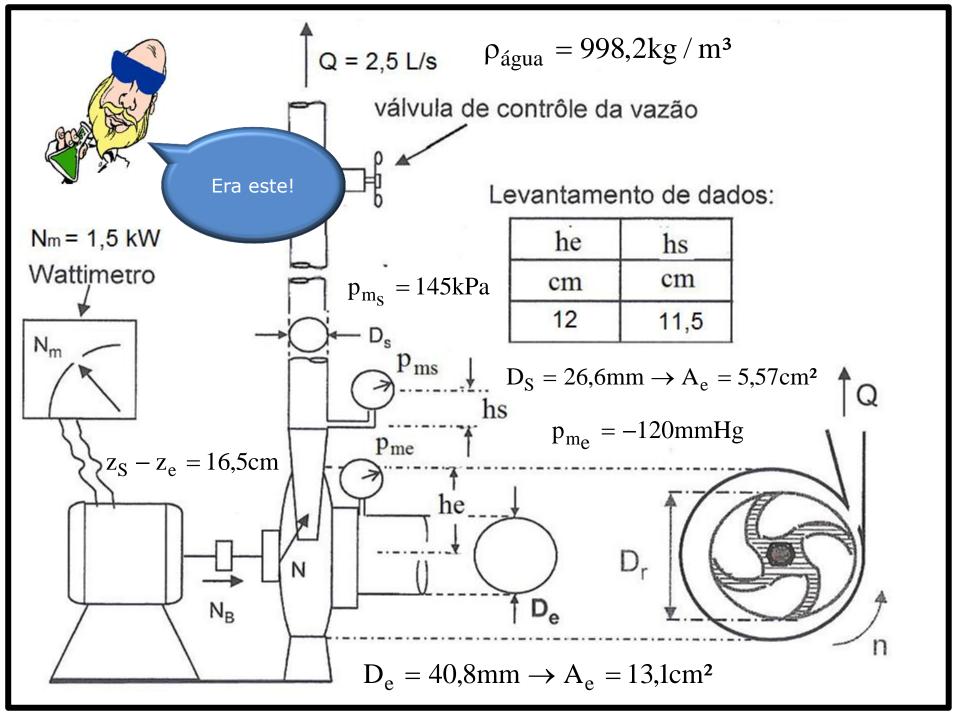

$$p_{x} = p_{m} + \gamma \times h_{c}$$

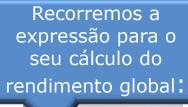
A carga total em uma seção (x) do escoamento incompressível e em regime permanente que é considerada na equação da energia é:


importante




$$H_{x} = z_{x} + \frac{p_{x}}{\gamma} + \frac{\alpha_{x} \times v_{x}^{2}}{2g}$$


$$\alpha_x = 2.0 \Rightarrow \text{Re} \le 2000 \Rightarrow \text{la min ar}$$


$$\alpha_x \cong 1.0 \Rightarrow \text{Re} \ge 4000 \Rightarrow \text{turbulento}$$



$$\eta_{global} = \frac{\gamma \times Q \times H_B}{N_m}$$

E passamos a responder: o que conhecíamos?

Conhecíamos a potência consumida pelo motor elétrico e que foi lida no wattímetro, Nm = 1,5 kW

O exercício simulava o levantamento de dados na experiência de bombas para uma dada vazão.



Todos sabem como obtemos as propriedades anteriores?

Propriedades do mercúrio em função da temperatura

θ	$\rho_{\rm w}$		$ ho_{H_{\mathcal{G}}}$
		$v_{\rm w}$	
		* 10 ⁶	
[°C]	[kg/m ³]	[m ² /s]	[kg/m ³]
0	999,8	1,791	13595
1	999,9	1,731	13593
2	1000,0	1,674	13590
3	1000,0	1,620	13588
4	1000,0	1,568	13585
5	999,9	1,520	13583
6	999,9	1,473	13580
7	999,9	1,429	13578
8	999,9	1,387	13575
9	999,8	1,346	13573
10	999,7	1,308	13570
11	999,6	1,271	13568
12	999,5	1,236	13565
13	999,4	1,202	13563
14	999,2	1,170	13561

θ			0
	$\rho_{\rm w}$	$\nu_{\rm w}$	$ ho_{H_g}$
		* 10 ⁶	
[°C]	[kg/m ³]	[m ² /s]	[kg/m ³]
21	998,0	0,980	13543
22	997,8	0,957	13541
23	997,5	0,934	13538
24	997,3	0,913	13536
25	997,0	0,892	13534
26	996,8	0,873	13531
27	996,5	0,854	13529
28	996,2	0,835	13526
29	995,9	0,817	13524
30	995,7	0,800	13521
31	995,3	0,784	13519
32	995,0	0,768	13516
33	994,7	0,753	13514
34	994,4	0,738	13511

Com a massa específica (ρ) podemos achar o peso específico (γ)

$$\gamma = \rho \times g$$

A aceleração da gravidade deveria ser obtida em função da latitude e da altitude, no caso de São Bernardo do Campo, temos: latitude igual a -23,69389º e altitude igual a 762 m, informações obtidas da página da Prefeitura de SBC.

Então não devo usar 10 m/s²?

Não seria aconselhável!

Mas como vou achar o g?

A primeira possibilidade é utilizando a fórmula internacional da gravidade e que foi estabelecida por Somigliana e Silva em 1930 em Stocolmo.

$$g_{\varphi} = 978,049 \times (1 + 0,005288 \times \text{sen}^2 \varphi - 0,0000059 \times \text{sen}^2 2\varphi)$$

 $g_{\phi} \rightarrow aceleração da gravidade em função da latitude <math display="inline">(\phi)$ ao nível do mar

978,049 → é o valor de referência da aceleração da gravidade em cm²/s e considerado na linha do Equador.

 $\phi \rightarrow$ latitude em graus

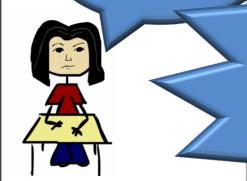
A correção para a altitude (z) é feita pela expressão da balança de Jolly:

$$g_z = g_{\phi} \times (1 - 0.000000309 \times z)$$

 $z \rightarrow altitude em metro$

A segunda possibilidade é utilizando a fórmula apresentada no Manual de Hidráulica escrito pelo professor Azevedo Netto e outros e editado pela Edgard Blucher em sua 8ª edição

$$g = 980,616 - 2,5928 \times \cos 2\varphi + 0,0069 \times (\cos 2\varphi)^2 - 0,3086 \times H$$


 $\phi \rightarrow$ latitude em graus

 $H \rightarrow altitude em km$

Considerando os dados de SBC em ambas as fórmulas obtemos g aproximadamente igual a 9,8 m/s²

g → aceleração da gravidade em cm/s²

Como a Q era dada, bastava achar a H_B

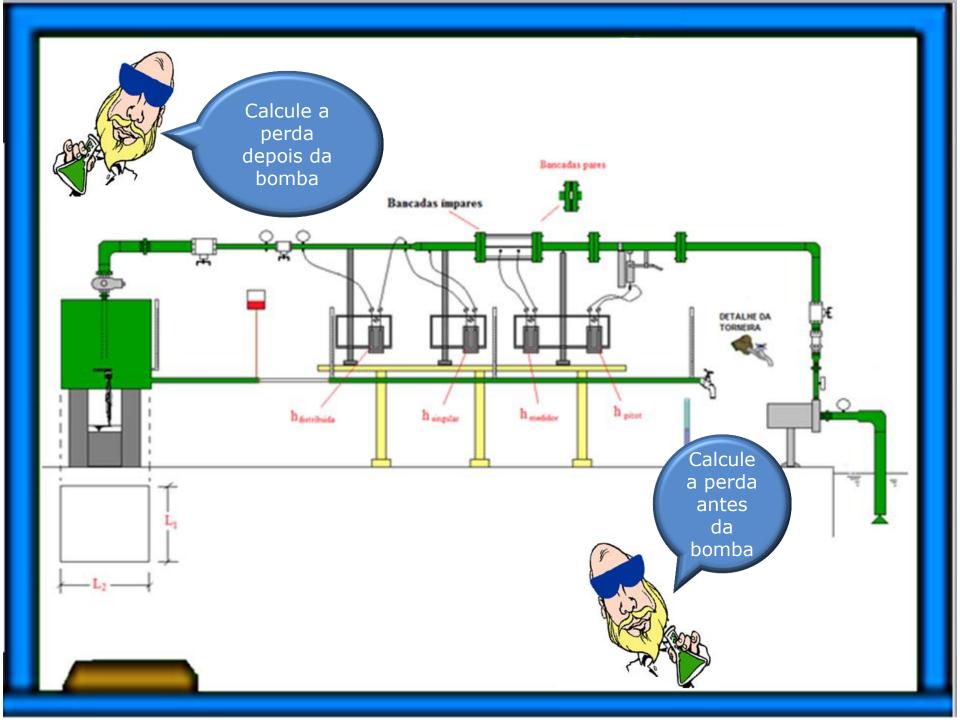
Para tal,
aplicamos a
equação da
energia entre a
seção de entrada
e saída da
bomba:

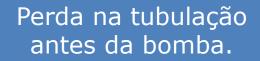
Terminado este exercício foi proposto o exercício para a determinação da Hp na tubulação antes e depois da bomba instalada na bancada do laboratório.

$$H_e + H_B = H_s$$

$$z_e + \frac{p_e}{\gamma} + \frac{\alpha_e \times v_e^2}{2g} + H_B = z_s + \frac{p_s}{\gamma} + \frac{\alpha_s \times v_s^2}{2g}$$

Obtínhamo a H_B e em seguida o η_{global}




"O saber se aprende com os mestres. A sabedoria só com o corriqueiro da vida."

Reflitam sobre isto!

Cora Coralina

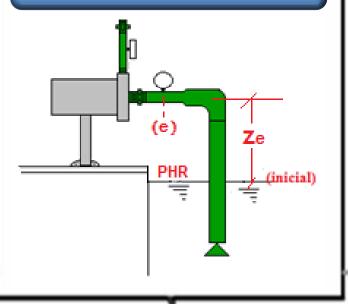
$$H_{inicial} = H_e + H_{paB}$$

$$z_i + \frac{p_i}{\gamma} + \frac{v_i^2}{2g} = z_e + \frac{p_e}{\gamma} + \frac{\alpha_e \times v_e^2}{2g} + H_{paB}$$

$$H_{paB} = -\left[z_e + \left(\frac{p_{me} + \gamma \times h_e}{\gamma}\right) + \frac{\alpha_e \times v_e^2}{2g}\right]$$

Exemplo de cálculo na bancada 1 do laboratório

Bancada	L1 (m)	L2 (m)	he (cm)
exp. Monitores	0,74	0,74	11,5


Dados coletados pelos monitores

Bancada	Ensaios	Δh (mm)	t(s)	pme (mmHg)	ze (cm)
	1	100	20,1	-180	
1	2	100	27,68	-140	124
	3	100	46,03	-110	

Bancada	Ensaios	Q (L/s)	v _e (m/s)	p _e (Pa)	H _{paB} (m)
	1	2,7	2,1	- 22770,6	0,868
1	2	2,0	1,5	- 17460,6	0,429
	3	1,2	0,9	- 13478,1	0,096

$$\begin{split} H_{paB} &= f \times \frac{\left(L + \sum Leq\right)_{aB}}{D_H} \times \frac{Q^2}{2g \times A^2} \\ \left(L + \sum Leq\right)_{aB} &= L_{total_{aB}} = cons \ tan \ te \\ \frac{H_{paB}}{L_{total_{aB}}} &= f \times \left(\frac{1}{D_H \times 2g \times A^2}\right) \times Q^2 \\ \frac{H_{paB}}{L_{total_{aB}}} &= f \times cte \times Q^2 \end{split}$$

Aumentando a Q, temos uma diminuição do "f", será que diminui mais que a Q aumenta?

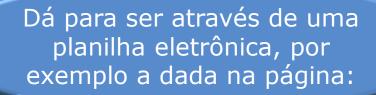
Q(m³/h)	v(m/s)	Re	$f_{Churchill}$	hf/Ltotal
9,8	2,1	88663,4	0,02303	0,125
7,1	1,5	64383,5	0,02381	0,068
4,3	0,9	38716,8	0,02543	0,026

Pela tabela acima a conclusão é coerente!

O que vem a ser f_{Churchill}?

$$f = 8 \times \left\{ \left(\frac{8}{Re} \right)^{12} + \left[\frac{1}{(A+B)^{1,5}} \right] \right\}^{\frac{1}{12}}$$

Churchill elaborou uma fórmula para a determinação do f e que é válida para qualquer regime de escoamento.

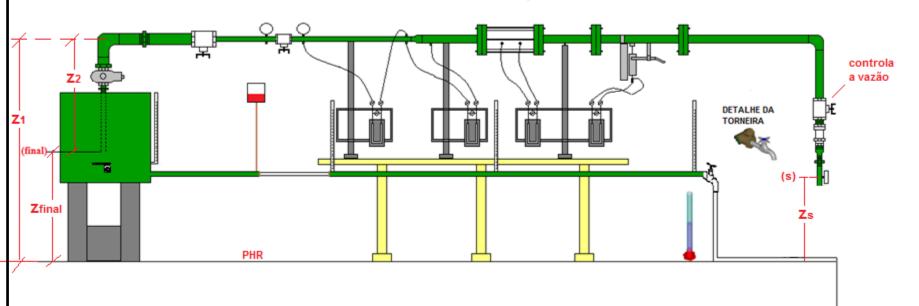

$$A = \left\{ -2,457 \times \ln \left[\left(\frac{7}{Re} \right)^{0,9} + \frac{0,27 \times K}{D} \right] \right\}^{16}$$

$$B = \left(\frac{37530}{Re}\right)^{16}$$

É bom a gente praticar a utilização desta fórmula através da calculadora!

Se não a gente vai acabar errando!


Tem que ser pela calculadora?


	propriedades do fluido transportado							
temp (ºC)		μ (kg/ms)	ρ (kg/m ³)	p _v (Pa)	v (m ² /s)			
18		1,05E-03	998,6		1,055E-06			
propr	iedades do lo	cal						
g =		m/s²						
patm =		Pa						

http://www.escoladavida.eng.br/mecfluquimica/planejamento_12013/consulta7.htm

Legal!

BANCADA 1 COM RESERVATÓRIO VAZIO E SEÇÃO FINAL NA SAÍDA DO TUBO

$$H_s = H_{final} + H_{pdB}$$

$$z_s + \frac{p_s}{\gamma} + \frac{\alpha_s \times v_s^2}{2g} = z_f + \frac{p_f}{\gamma} + \frac{\alpha_f \times v_f^2}{2g} + H_{pdB}$$

$$H_{pdB} = \left(z_s - z_f\right) + \frac{p_{ms} + \gamma \times h_s}{\gamma} + \frac{\alpha_s \times v_s^2 - \alpha_f \times v_f^2}{2g}$$

Exemplo de cálculo na bancada 1 do laboratório

Bancada	L1 (m)	L2 (m)	hs (cm)
1	0,74	0,74	9

Bancada	Ensaio s	Δh (mm)	t(s)	pms (Kpa)	z _s (cm)	z ₁ (cm)	z ₂ (cm)	z _f (cm)
	1	100	20,1	190				
1	2	100	27,68	225	101	202	114	88
	3	100	46,03	260				

Bancada	Ensaios	Q (L/s)	v _s (m/s)	v _f (m/s)	ps (Pa)	H _{pdB} (m)
	1	2,7	4,9	4,9	190880,1	19,7
1	2	2,0	3,6	3,6	225880,1	23,2
	3	1,2	2,1	2,1	260880,1	26,8

$$\begin{split} H_{pdB} &= f \times \frac{\left(L + \sum Leq\right)_{dB}}{D_H} \times \frac{Q^2}{2g \times A^2} \\ \left(L + \sum Leq\right)_{dB} &= L_{total_{dB}} = \text{aumenta com a diminuição da Q} \end{split}$$

$$H_{paB} = f \times \left(\frac{L_{total_{dB}}}{D_{H} \times 2g \times A^{2}}\right) \times Q^{2}$$

$$H_{paB} = f \times \frac{L_{totaldB}}{cte} \times Q^2$$

Aumentando a Q, temos uma diminuição tanto do "f" como do L_{total dB}, será que diminuem mais que a Q aumenta?

Reflitam!

En sien sones

