ESTUDO DE PERDA DE CARGA

Objetivo

- Estudar a variação da perda de carga antes e depois da bomba em função da vazão;
- Explicar o comportamento da perda de carga em cada um dos casos;
- Analisar a variação do comprimento equivalente da válvula globo.

Porque estudar a perda de carga??

- "Segundo Brown (2.001), estima-se que de toda energia elétrica utilizada pela indústria, 65% seja destinada a motores elétricos e que, do montante relativo a esse percentual, 20% seja desperdiçado por mecanismos de controle (ex.: válvula)".[1]
- Em indústrias de processamento, indústrias químicas, refinarias de petróleo, e petroquímicas, boa parte das indústrias alimentícias e farmacêuticas, o custo das tubulações pode representar 70% do custo dos equipamentos ou 25% do custo total da instalação.[2]

Perda de Carga em Tubulações

Tubos

 Entrada e saída de tubos, acessórios hidráulicos, medidores de vazão e controladores de vazão.

Perda de carga distribuída = Perda nos tubos

- Atrito entre um fluido e paredes internas do tubo atrito entre fluido e fluido.
- É calculada pela formula universal.

$$h_f = f \times \frac{L}{D_H} \times \frac{Q^2}{2g \times A^2}$$

Perda de carga localizada (h_s)

- Entrada e saída de tubos;
- Acessórios hidráulicos;
- Medidores de vazão;
- Controladores de vazão.

$$h_{S} = K_{S} \times \frac{Q^{2}}{2g \times A^{2}} = f \times \frac{L_{eq}}{D_{H}} \times \frac{Q^{2}}{2g \times A^{2}}$$

• Utilização da bancada I e da bancada 7;

• Demonstração do que ocorre com a perda quando variamos a vazão;

Realização de 2 experimentos.

I° experimento

Realizado para calcular a perda de carga antes e depois da bomba.

Bancada I do laboratório de Mecânica dos Fluídos do Centro Universitário da FEI

$$Z_{\text{nível} \rightarrow \text{eixo_da_bomba}} = 1,18 \text{ m}$$
 $Z_{\text{chão} \rightarrow \text{saída_da_bomba}} = 0,94 \text{ m}$
 $Z_{\text{final}} = 0,88 \text{ m}$
 $Z_{\text{figua}} = 76 \text{ °F} = 24 \text{ °C}$
 $\Delta h = 0,1 \text{ m}$

h de correção (entrada) = 0,11 m
h de correção (saída) = 0,09 m
$$A_{tanque}$$
 = 0,5476 m²
 $\gamma_{água}$ = 9773,54 N/m³

Ensaios	t (s)	Q (m ³ /s)	P _{maB} (kPa)	P _{mdB} (kPa)
1	20,11	0,00272	-25,331	210
'	20,11	0,00272	-23,331	210
2	25,18	0,00217	-19,998	220
3	33,17	0,00165	-16,665	240
4	86,46	0,00063	-13,332	270

2° experimento

Realizado para o cálculo do comprimento equivalente da válvula globo

Bancada 7 do laboratório de Mecânica dos Fluídos do Centro Universitário da FEI

• 2° experimento

Válvula globo

• 2° experimento

$$h_e = 0,225 \text{ m}$$

$$h_s = 0.245 \text{ m}$$

$$T = 72 \text{ }^{\circ}F = 22,22 \text{ }^{\circ}C$$

$$A_{tanque} = 0,5476 \text{ m}^2$$

$$\Delta z = 0.29 \text{ m}$$

$$D_e = 0.0525 \text{ m}$$

$$D_s = 0.0408 \text{ m}$$

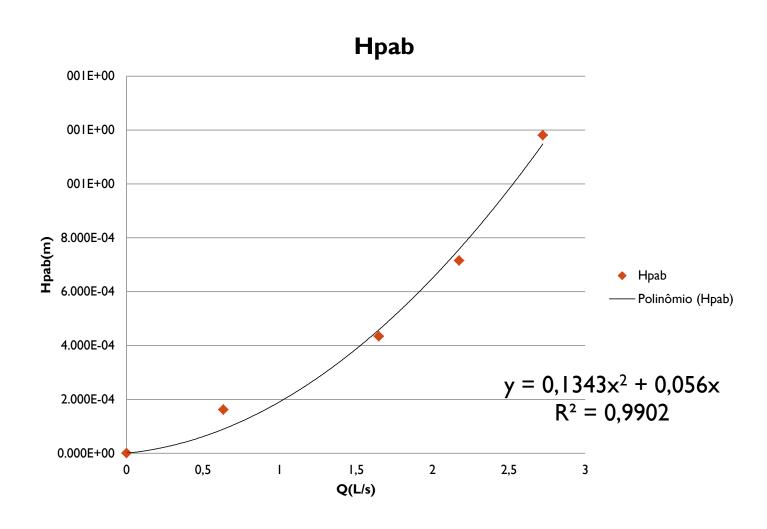
$$A_e = 0,00217 \text{ m}^2$$

$$A_s = 0,00131 \text{ m}^2$$

	Bomba		Válvula globo			
Ensaio	P _{me} (mmHg)	P _{ms} (psi)	P _{me} (psi)	P _{ms} (psi)	∆h (m)	t (s)
1	-190	22,5	18,5	12	0,1	18,31
2	-160	30,5	27	7	0,1	22,00
3	-135	38	35,5	3	0,1	31,43
4	-120	40	38	0,5	0,1	36,18

Resultados

$$Hp_{aB} = f \times \frac{(L + L_{eq})}{D_h} \times \frac{Q^2}{2.g.A^2}$$


$$Hp_{dB} = f \times \underbrace{\frac{(L + L_{eq_v\'alvula_globo} + L_{eq})}{D_h}}_{(Cte)} \times \underbrace{\frac{Q^2}{2.g.A^2}}_{Cte}$$

Resultados


• l° experimento (análises das perdas de carga antes e depois da bomba)

Hp _{aB} (m)	Hp _{dB} (m)	Q (m ³ /s)	Q (L/s)
1,18	19,5	0,00272	2,7
0715	22,6	0,00217	2,2
0,433	24,6	0,00165	1,7
0,161	27,7	0,00063	0,6

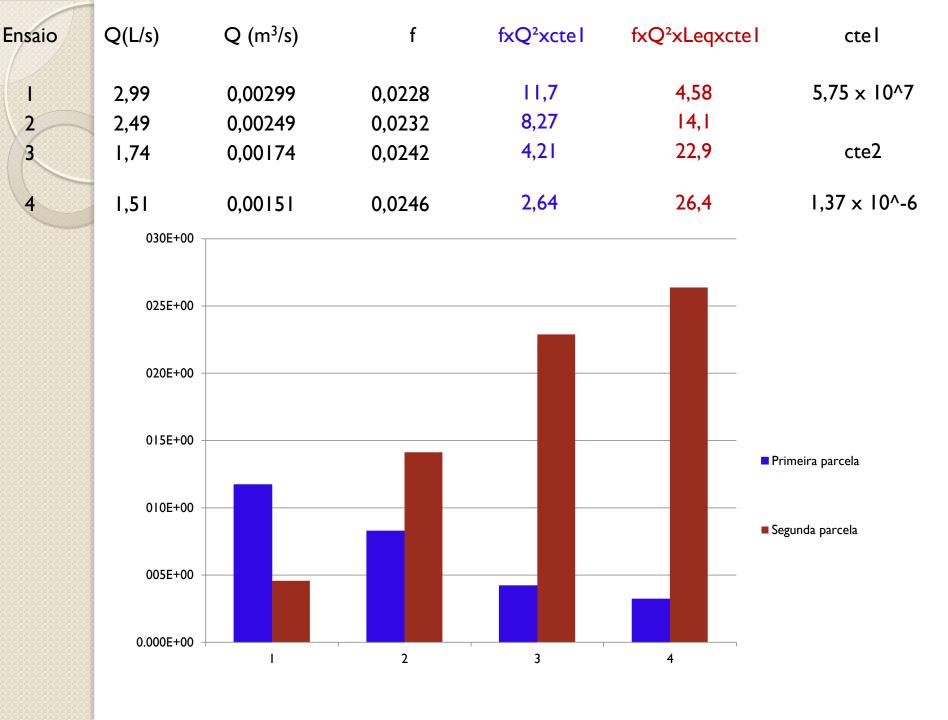
Perda de Carga Antes da Bomba

Perda de Carga Depois da Bomba

Análise de dados e resultados

- I° experimento
- Antes da bomba a perda diminui com o diminuição da vazão;
- Para depois da bomba, a perda aumenta com a diminuição da vazão;
- Realização do 2° experimento.

Resultados


• 2° experimento (análise do comprimento equivalente em função da vazão)

Ensaio	Perda (m)	Q (m ³ /s)	f	Leq (m)
I	4,58	0,00299	0,0228	30,8
2	14,1	0,00249	0,0232	134,6
3	22,9	0,00174	0,0242	428,1
4	26,5	0,00151	0,0246	644,0

Análise da dados e resultados

- 2° experimento
- Fechando a válvula globo, o comprimento equivalente da válvula aumenta;
- Consequentemente, a perda depois da bomba também aumenta;
- O fechamento da válvula força o escoamento.

$$H_{p_{dB}} = \underbrace{\frac{f \times \left(L + \sum L_{eq} + L_{eq(valv.globo)}\right) \times Q^{2}}{D_{H} \times 2 \times g \times A^{2}}}_{D_{H} \times 2 \times g \times A^{2}} + \underbrace{\frac{f \times L_{eq(valv.globo)} \times Q^{2}}{D_{H} \times 2 \times g \times A^{2}}}_{\text{cte1}}$$

Comentários

- Vazão é inversamente proporcional à perda de carga depois da bomba;
- Comprimentos equivalentes depois da bomba não são constantes quando modificamos a vazão;
- Analogia ao freio de mão do carro.

Monitores

• Thais Ribeiro Costa 11.211.414-5

• Leonardo S. O. Hayasida 11.111.568-9

Jéssica Amorim

11.111.349-4

Bibliografia

- [1]http://www.escoladavida.eng.br/mecfluquimica/planejamento_12014/inversor_de_frequ%C3%AAncia1.pdf.Autor:Wladimir Rodrigues.
- [2]http://www.escoladavida.eng.br/mecfluquimica/planejamento_12013/monitoria/Refletindo%20sobre%20os%20tubos.pdf.Autor: Bruno Fantini.
- [3]e[4]http://www.escoladavida.eng.br/mecflubasica/aulasfei/12014/experiê ncia_de_perda_de_carga_12014.pdf.Autor: Raimundo Inácio
- [5]http://www.escoladavida.eng.br/mecflubasica/aulasfei/12014/experiência _medidores_12014.pdf.Autor: Raimundo Inácio
- [6]http://www.congeval.com.br/produtos/fotos/valvula-globo.jpg