
# Décima primeira aula de ME5330

Primeiro semestre de











A potência mecânica é a grandeza física que determina a quantidade de energia concedida por uma fonte a cada unidade de tempo



$$N_{mec} = \frac{\Delta E}{\Delta t} = \frac{\Delta (F \times s)}{\Delta t} = F \times v$$

$$v = \frac{2\pi nr}{60}$$

C = conjugado (ou torque)

$$C = F \times r$$

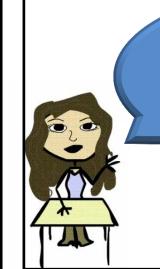
r = raio do rotor

$$N_{\text{mec}} = C \times \frac{2\pi}{60} \times n = F \times r \times \frac{2\pi}{60} \times n$$

## Velocidade de rotação síncrona (ns)



$$n_s = \frac{120 \times f}{p} \rightarrow [f] = Hz$$


p = número de pólos

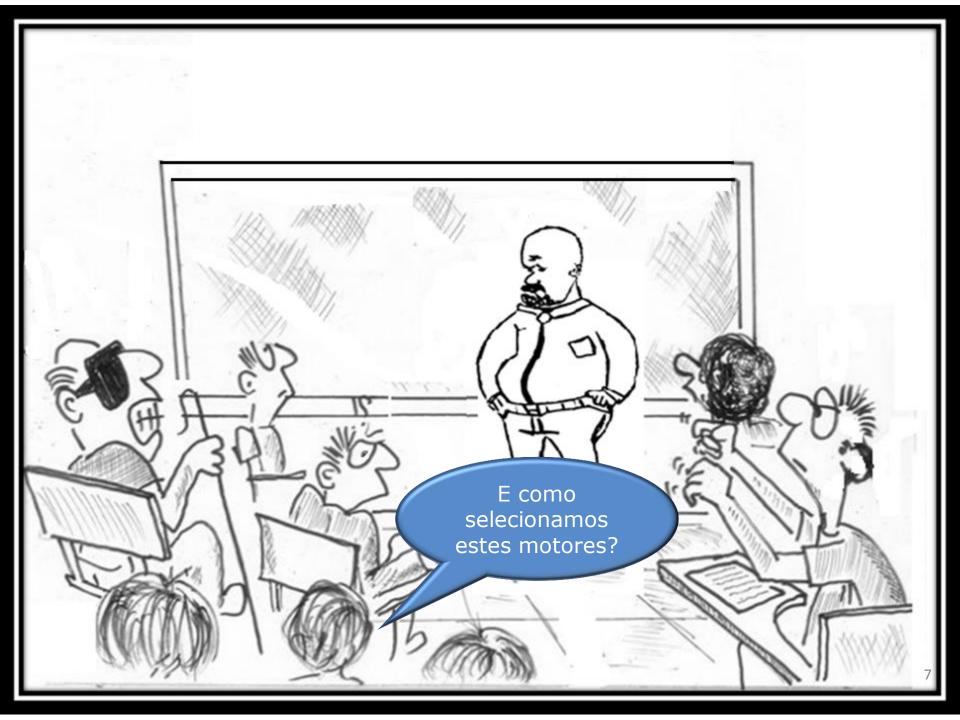
2 p'olos = 3600 rpm

 $4 p \acute{o}los = 1800 rpm$ 

6 p'olos = 1200 rpm

 $8 \,\mathrm{p\'olos} = 900 \,\mathrm{rpm}$ 

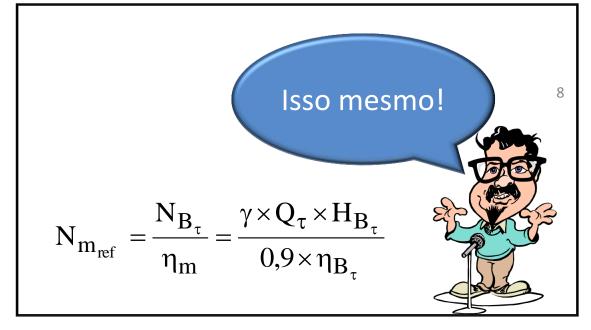


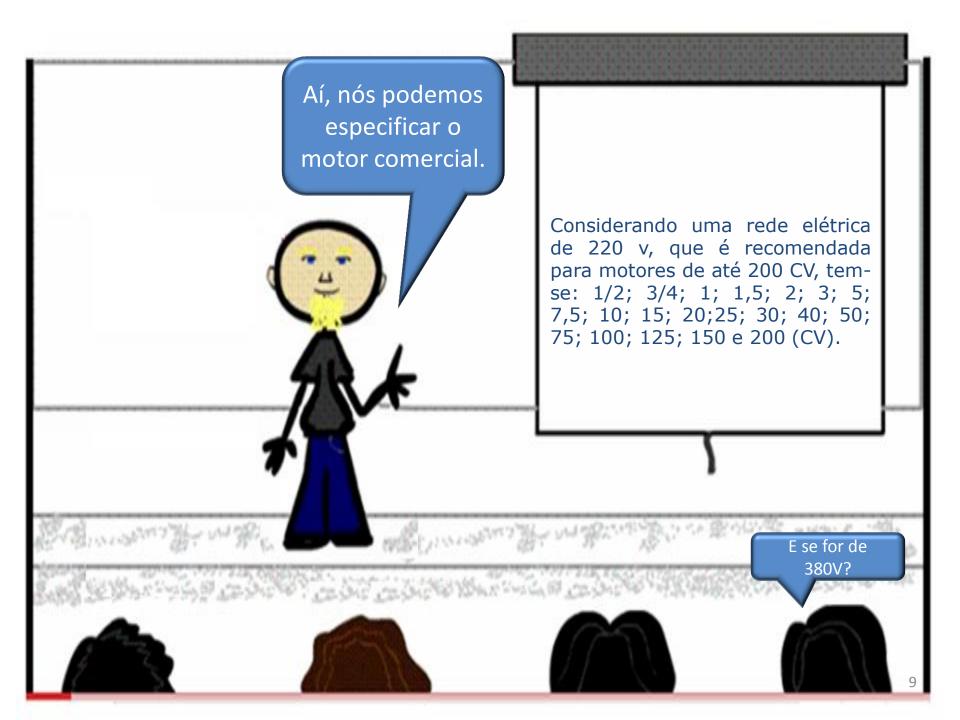

Geralmente os motores síncronos só são usados para potências > que 500CV

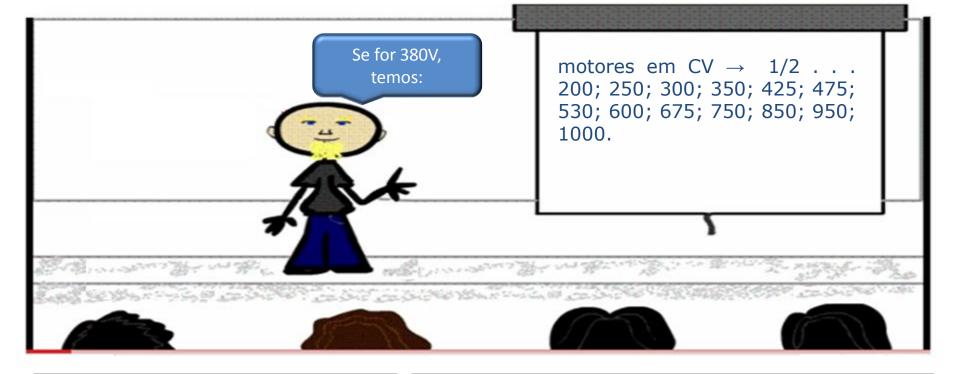








Sim e a diminuição é originada pelo escorregamento (s), que geralmente é da ordem de 3 a 5%  $n = n_s \times \left(1 - \frac{s}{100}\right)$ 







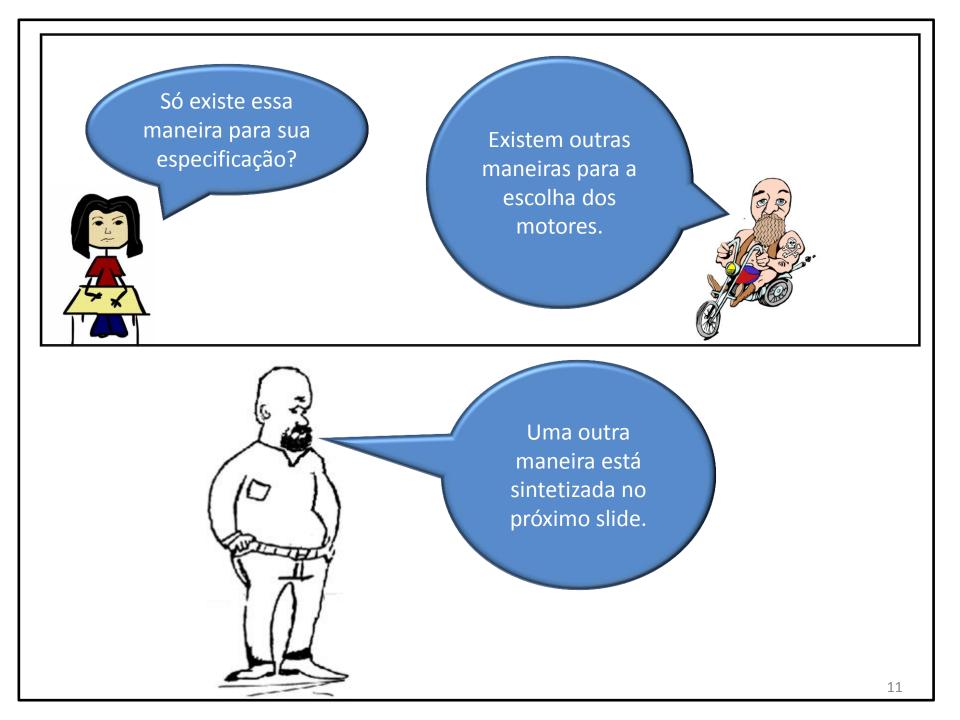









Sim, mas podemos também calcular o rendimento real do motor elétrico!




$$\eta_{m_{real}} = \frac{N_{B_{\tau}}}{N_{m_{comercial}}}$$

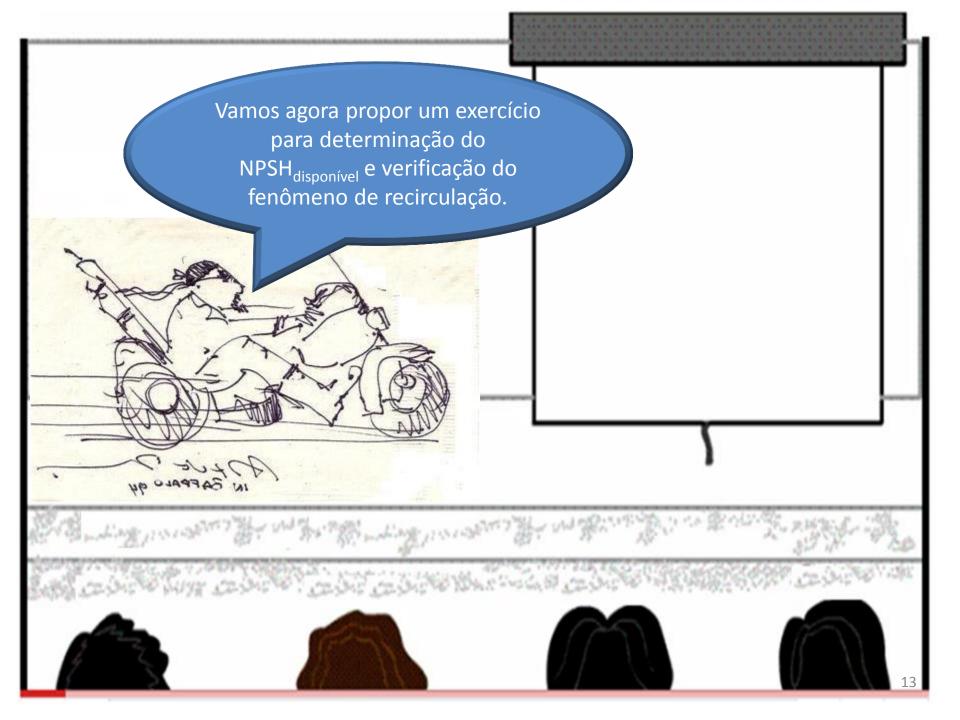
 $Consumo_{energia}_{ex.mensal} = A$ 

$$A = N_{m_{comercial}}(kW) \times a \left(\frac{h}{dia}\right) \times b \left(\frac{dia}{mes}\right)$$

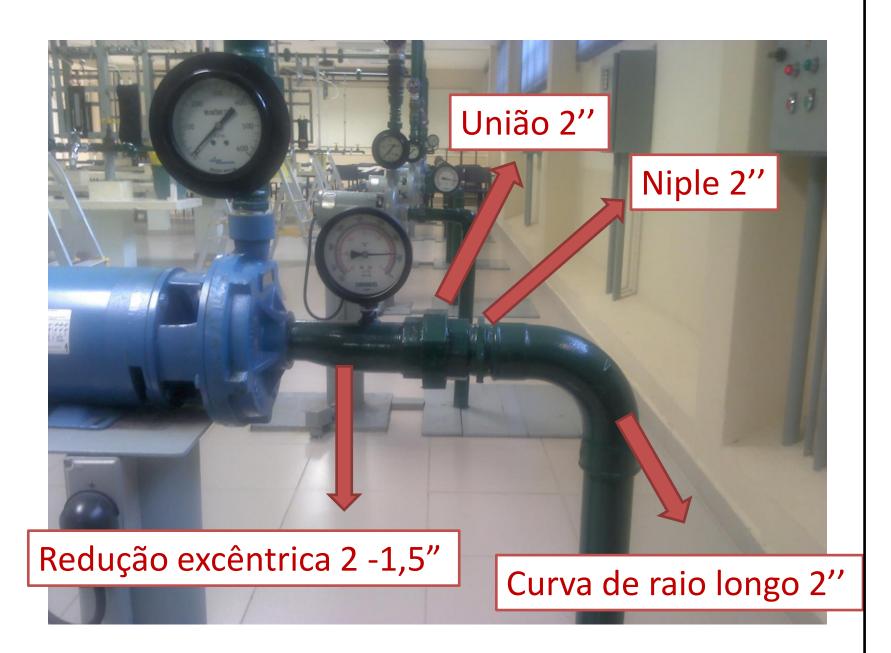
10



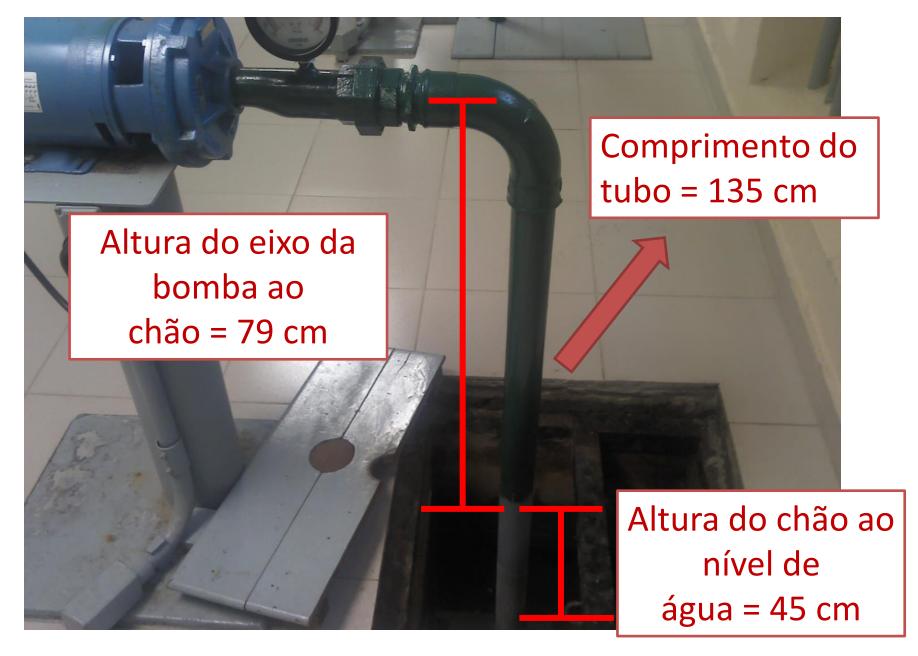
O motor que aciona a bomba deverá trabalhar sempre com uma folga ou margem de segurança a qual evitará que o mesmo venha, por uma razão qualquer, operar com sobrecarga. Portanto, recomenda-se que a potência necessária ao funcionamento da bomba  $(N_B)$  seja acrescida de uma folga, conforme especificação a seguir (para motores elétricos):


Potência exigida pela Bomba (N<sub>B</sub>) Margem de segurança recomendada (%)

| até 2 cv       | 50% |
|----------------|-----|
| de 2 a 5 cv    | 30% |
| de 5 a 10 cv   | 20% |
| de 10 a 20 cv  | 15% |
| acima de 20 cv | 10% |


Para motores a óleo diesel recomenda-se uma margem de segurança de 25% e a gasolina, de 50% independente da potência calculada.

A TABELA ACIMA PODE SER LIDA NA PÁGINA 69 DO LIVRO BOMBAS E INSTALAÇÕES DE BOMBEAMENTO ESCRITO POR A. J. MACINTYRE E EDITADO PELA LTC EM 2008.











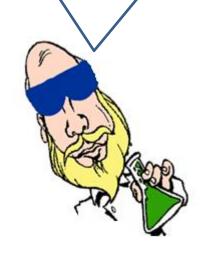








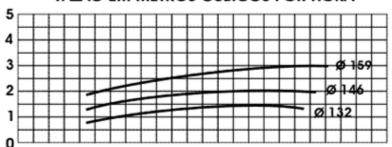
## Bancada 6 do laboratório - sala ISO1 do Centro Universitário da FEI

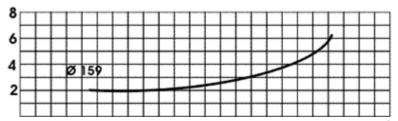



| MODELO | CV  | 14   | 16   | 18   | 20   | 22   | 24   | 26   | 28   | 30   | 35   | 40  | 45  |
|--------|-----|------|------|------|------|------|------|------|------|------|------|-----|-----|
| RF-5   | 1.5 | 12,0 | 11,0 | 10,5 | 10,0 | 9,5  | 9,0  | 8,0  | 7,0  | 5,0  |      |     |     |
| RF-6   | 2.0 | S)   |      | 12,8 | 12,5 | 12,0 | 11,5 | 11,0 | 10,5 | 9,6  | 7,0  |     | 8   |
| RF-7   | 3.0 | 3    |      |      | 0.   | V 8  | - e  |      | 13,5 | 12,8 | 11,5 | 9,2 | 6,0 |

No nosso caso é a RF - 6

### RUDC INDÚSTRIA E COMÉRCIO LTDA

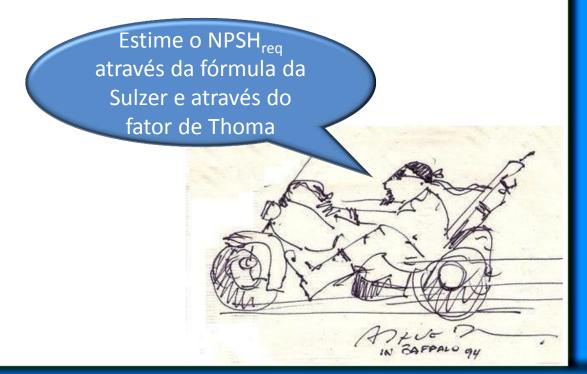

**CURVA RF** 



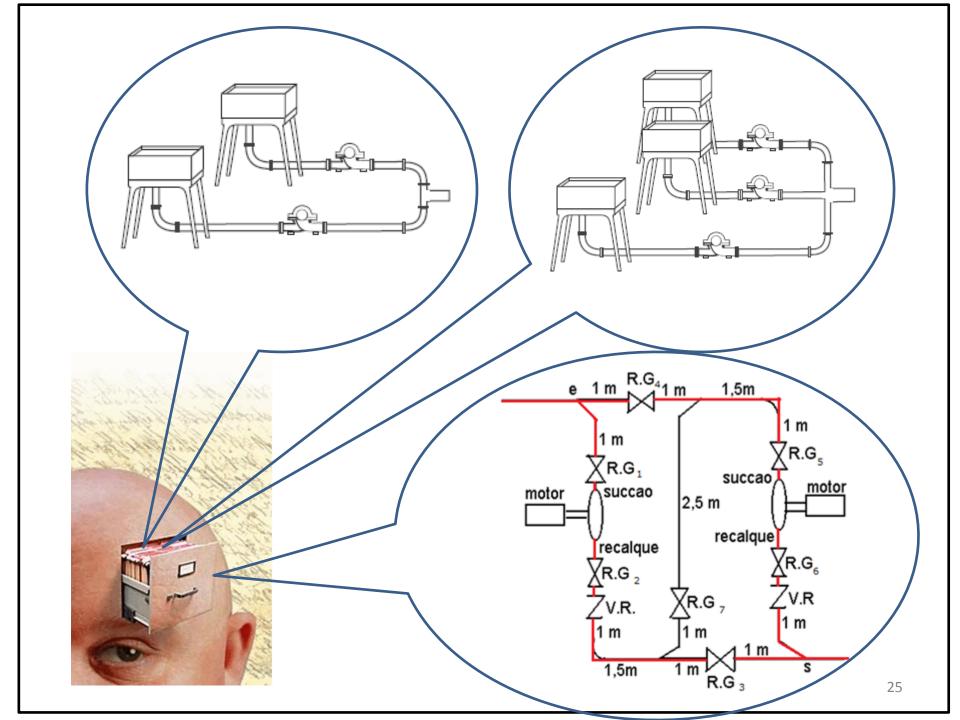

POTÊNCIA (CV)

NPSH (METROS)

#### VAZÃO EM METROS CÚBICOS POR HORA



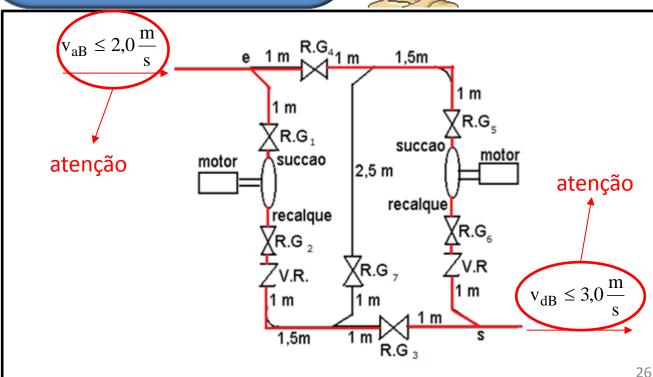



72º – Uma bomba de 1750 rpm transporta água a 40ºC através de uma carga manométrica de 45,5 m num local com pressão barométrica igual a 700 mmHg. Nesta condição de funcionamento a pressão manométrica medida através de um manovacuômetro é -395 mmHg e a velocidade na sua entrada é igual a 1,5 m/s. Verifique a existência, ou não, do fenômeno de cavitação; estime o rendimento da bomba e escolha o motor elétrico adequado para acionar a bomba.

Dado: tubulação antes da bomba de aço 40 com diâmetro nominal igual a 3".





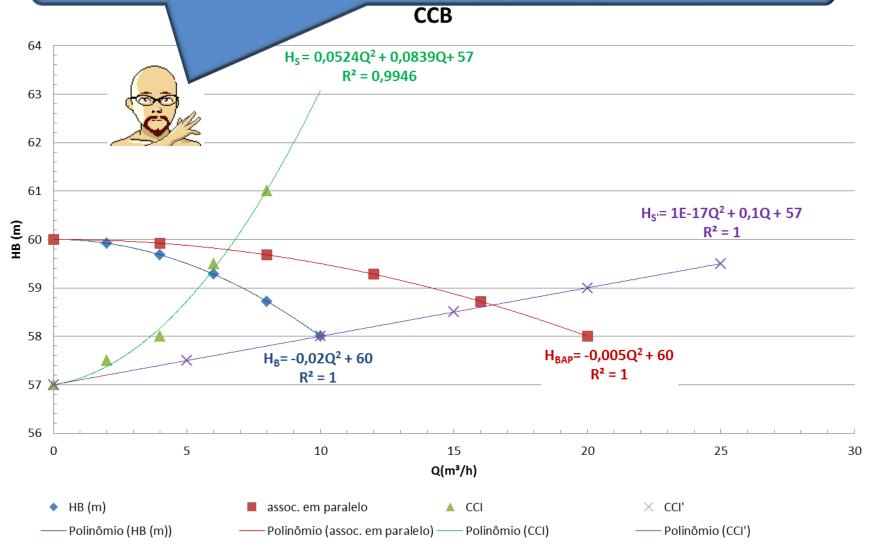



Aqui é importante se pensar na alimentação pela tubulação do centro, pois se houver acentuadas perda de carga na linha, o aumento da vazão com duas ou mais bombas em paralelo será pequeno e, portanto, pouco compensador.

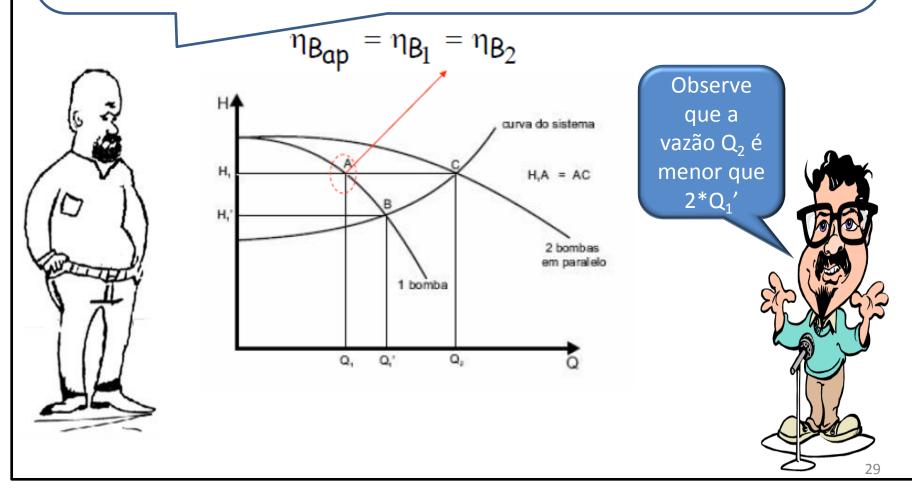
A figura abaixo
especifica as
recomendações
para as
velocidades em
uma associação
em paralelo.

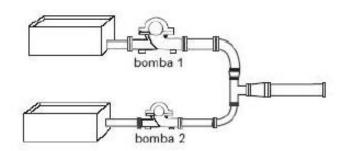





O próximo slide objetiva possibilitar a visualização do que foi mencionado anteriormente, lembrando que para a obtenção da curva  $H_{Bap} = f(Q_{ap})$ , devemos para a mesma carga manométrica somar as vazões.

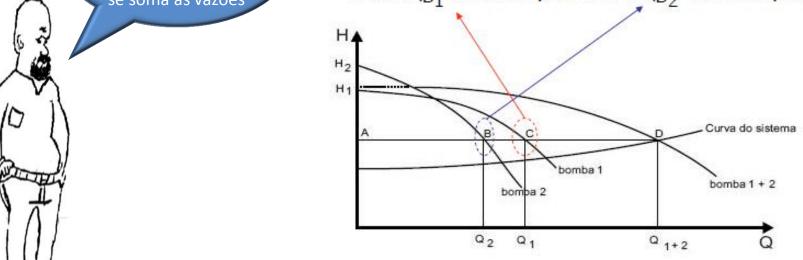

$$H_{B_{ap}} = H_{B_{B1}} = H_{B_{B2}}$$


$$Q_{ap} = Q_{B1} + Q_{B2}$$





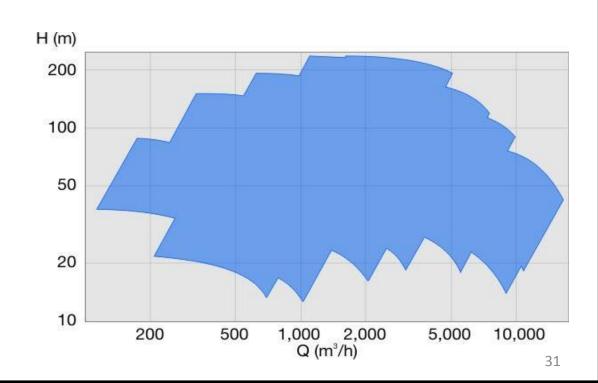
Na associação de bombas hidráulicas iguais, tem-se a curva característica da associação obtida como mencionado no slide anterior e como mostrado a seguir:





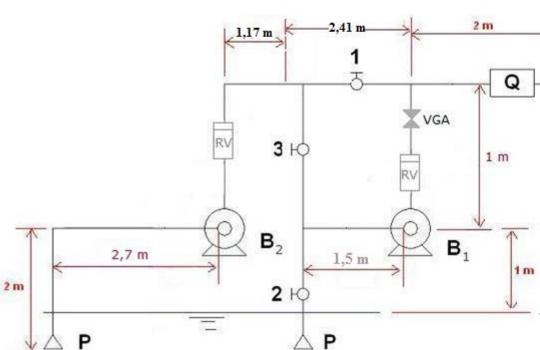

Bombas diferentes o procedimento é o mesmo, ou seja, para o mesmo HB se soma as vazões

$$\eta_{\text{Bap}} = \frac{Q_{\text{ap}}}{\frac{Q_1}{\eta_{\text{B1}}} + \frac{Q_2}{\eta_{\text{B2}}}}$$


onde  $\eta_{B_1}$  se lê no ponto C e  $\eta_{B_2}$  se lê no ponto B






BOMBAS DE DUPLA SUCÃO OU ADMISSÃO PODEM SUBSTITUIR AS ASSOCIAÇÕES EM PARALELO DE DUAS BOMBAS.





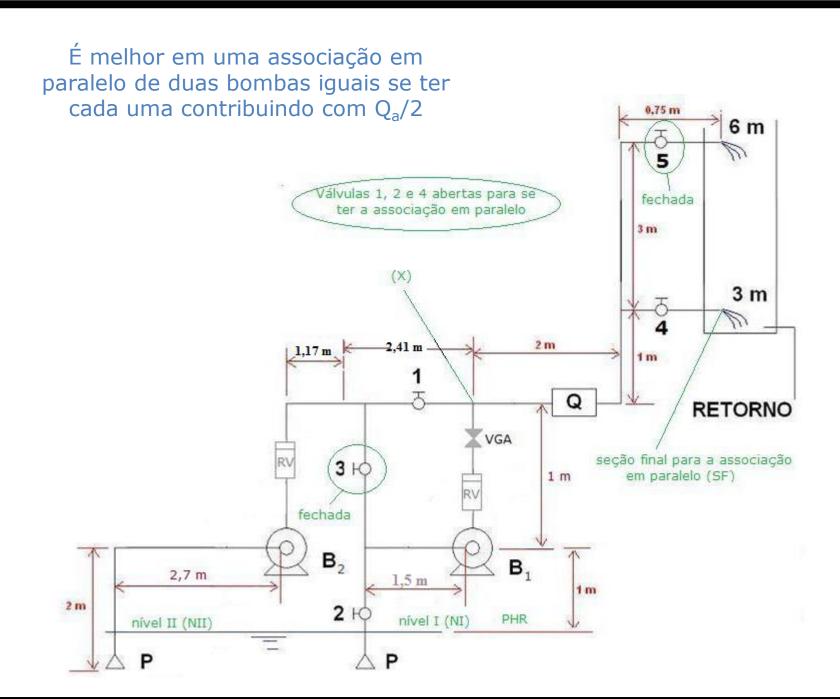
87º - Considere a instalação ao lado, que pode operar só com uma bomba, com bombas associadas em série e paralelo.

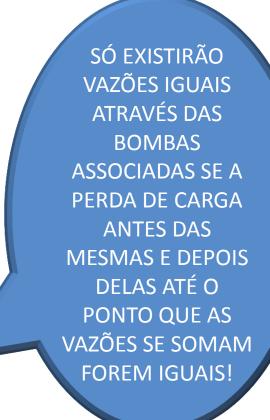
Sabe-se que as bombas são iguais e que a tubulação é de aço 40 com um único diâmetro nominal de 1,5" (K=4,6 x 10<sup>-5</sup> m), que as válvulas são da MIPEL e os demais acessórios são da Tupy e que o medidor de vazão (**Q**) é um Venturi com coeficiente de vazão igual a 0,98 e área da garganta igual a 25 mm.

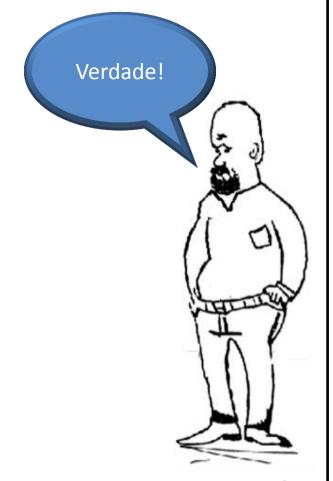


As singularidades 1, 2, 3, 4 e 5 são válvulas esferas de passagem plena, RV válvula de retenção vertical da MIPEL e VGA é válvula globo angular sem quia da MIPEL

0.75 m


3 m


1 m


6 m

3 m

RETORNO









#### singularidade Leq (m) Válvula globo angular sem guia 5,79 válvula de pé com 17,07 crivo cotovelo de 90° 1,41 válvula de retenção 17,07 T de saída lateral 2,06 T de passagem direta 0,25 T de saída 2,50 bilateral válvula esfera 0,55 venturi K<sub>Sventuri</sub> Saída de tub. 1,0

Para demonstrar as condições anteriores, consideramos os dados a seguir:



| D (mm) | A (cm²) |
|--------|---------|
| 40,8   | 13,1    |

| g (m/s²) | 9,8 |
|----------|-----|

$$K_{\text{SVenturi}} = \left[\frac{1}{C_{\text{v}}^2} - 1\right] \times \left[1 - \left(\frac{A_{\text{G arg anta}}}{A_{\text{Tubo}}}\right)^2\right]$$

$$K_{\text{SVenturi}} = \left[ \frac{1}{0.98^2} - 1 \right] \times \left[ 1 - \left( \frac{25}{40.8} \right)^4 \right]$$

$$K_{SVenturi} \cong 0.0355$$

35

Perdas de NI até a entrada da bomba B<sub>1</sub>

$$H_{p_{a}B_{1}} = f \times \frac{(3.5 + 17.07 + 0.55 + 2.06)}{0.0408} \times \frac{Q_{1}^{2}}{2 \times 9.8 \times (13.1 \times 10^{-4})^{2}}$$

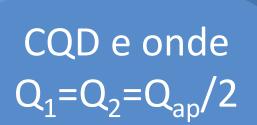
$$H_{paB_1} = f \times 16890970,59 \times Q_1^2$$

Perdas de NII até a entrada da bomba B<sub>2</sub>

$$H_{paB_2} = f \times \frac{(4,7+17,07+1,41)}{0,0408} \times \frac{Q_2^2}{2 \times 9,8 \times (13,1 \times 10^{-4})^2}$$

$$H_{paB_2} = f \times 16890970,59 \times Q_2^2$$

Perdas da saída da bomba B<sub>1</sub> até (X)


$$H_{p_{S_{B_1}-X}} = f \times \frac{\left(1 + 17,07 + 5,79\right)}{0,0408} \times \frac{Q_1^2}{2 \times 9.8 \times \left(13,1 \times 10^{-4}\right)^2}$$

$$H_{p_{S_{B_1}-X}} = f \times 17386477,93 \times Q_1^2$$

Perdas da saída da bomba B<sub>2</sub> até (X)

$$H_{p_{8}B_{2}-X} = f \times \frac{\left(1+17,07+1,41+1,17+0,25+0,55+2,41\right)}{0,0408} \times \frac{Q_{2}^{2}}{2 \times 9,8 \times \left(13,1 \times 10^{-4}\right)^{2}}$$

$$H_{p_{S}B_{2}-X} = f \times 17386477,93 \times Q_{2}^{2}$$







### Obtendo a equação da CCI

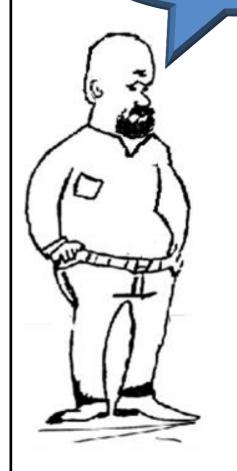
$$\gamma \times \frac{Q_{ap}}{2} \times H_{NI} + \gamma \times \frac{Q_{ap}}{2} \times H_{NII} + \gamma \times \frac{Q_{ap}}{2} \times H_{B1} + \gamma \times \frac{Q_{ap}}{2} \times H_{B1} = \gamma \times Q_{ap} \times H_{SF} + \sum N_{dissipadas}$$

$$\sum N_{dissipadas} = \gamma \times \frac{Q_{ap}}{2} \times H_{paB1} + \gamma \times \frac{Q_{ap}}{2} \times H_{paB2} + \gamma \times \frac{Q_{ap}}{2} \times H_{psB1-X} + \gamma \times \frac{Q_{ap}}{2} \times H_{psB2-X} + \gamma \times Q_{ap} \times H_{pX-SF}$$

Agora é aplicar no exercício proposto

$$\begin{split} H_{S} &= H_{SF} + \frac{1}{2} \times 16890970, 59 \times f_{Qap_{2}} \times \left(\frac{Q_{ap}}{2}\right)^{2} + \frac{1}{2} \times 16890970, 59 \times f_{Qap_{2}} \times \left(\frac{Q_{ap}}{2}\right)^{2} + \\ & \frac{1}{2} \times 17386477, 93 \times f_{Qap_{2}} \times \left(\frac{Q_{ap}}{2}\right)^{2} + \frac{1}{2} \times 17386477, 93 \times f_{Qap_{2}} \times \left(\frac{Q_{ap}}{2}\right)^{2} + H_{pX-SF} \\ H_{pX-SF} &= f_{Qap} \times \frac{\left(2 + 1 + 0,75 + 2,5 + 1,41 + 2,06 + 0,55 + 1\right)}{0,0408} \times \frac{Q_{ap}^{2}}{2 \times 9,8 \times \left(13,1 \times 10^{-4}\right)^{2}} \\ &+ 0,0355 \times \frac{Q_{ap}^{2}}{2 \times 9,8 \times \left(13,1 \times 10^{-4}\right)^{2}} \\ H_{pX-SF} &= f_{Qap} \times 8212305, 4 \times Q_{ap}^{2} + 1055, 5 \times Q_{ap}^{2} \\ H_{SF} &= 3 + \frac{\alpha_{sf} \times Q_{ap}^{2}}{2 \times 9,8 \times \left(13,1 \times 10^{-4}\right)^{2}} = 3 + \alpha_{sf} \times 29730, 5 \times Q_{ap}^{2} \end{split}$$

$$H_{S} = 3 + \alpha_{sf} \times 29730, 5 \times Q_{ap}^{2} + 8569362, 2 \times f_{Qap} \times Q_{ap}^{2} + 8212305, 4 \times f_{Qap} \times Q_{ap}^{2} + 1055, 5 \times Q_{ap}^{2}$$


Dados do fabricante:

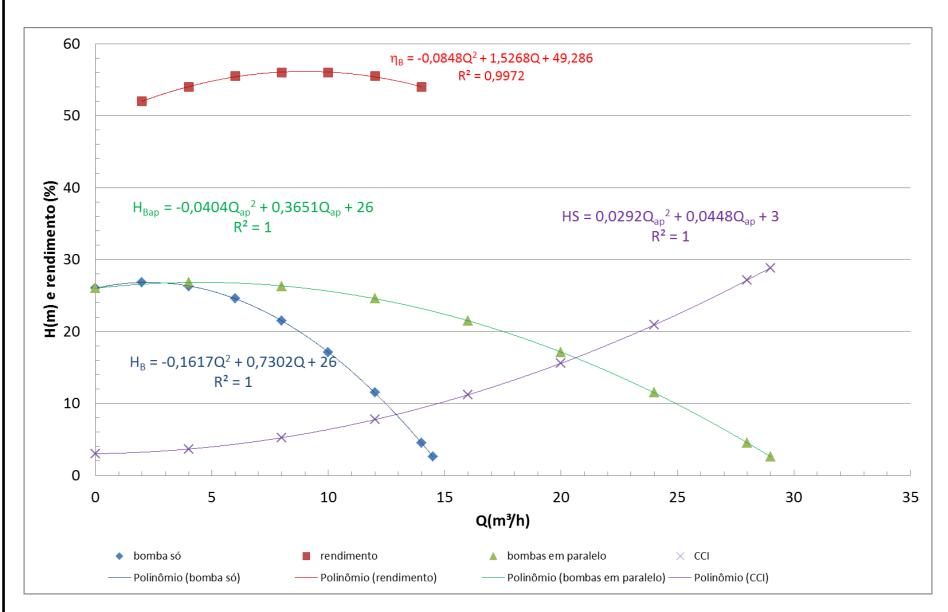


| CCB FABRICANTE                    |      |      |  |  |  |  |
|-----------------------------------|------|------|--|--|--|--|
| Q (m³/h) H <sub>B</sub> (m) η (%) |      |      |  |  |  |  |
| 0                                 | 26   | _    |  |  |  |  |
| 2                                 | 26,8 | 52   |  |  |  |  |
| 4                                 | 26,3 | 54   |  |  |  |  |
| 6                                 | 24,6 | 55,5 |  |  |  |  |
| 8                                 | 21,5 | 56   |  |  |  |  |
| 10                                | 17,1 | 56   |  |  |  |  |
| 12                                | 11,5 | 55,5 |  |  |  |  |
| 14                                | 4,5  | 54   |  |  |  |  |
| 14,5                              | 2,6  |      |  |  |  |  |

# Construíndo a CCB

### **CCB FABRICANTE**




| Q (m <sup>3</sup> /h) | $Q_{ap}$ (m $^3$ /h) | H <sub>B</sub> (m) | η (%) |  |
|-----------------------|----------------------|--------------------|-------|--|
| 0                     | 0                    | 26                 | _     |  |
| 2                     | 4                    | 26,8               | 52    |  |
| 4                     | 8                    | 26,3               | 54    |  |
| 6                     | 12                   | 24,6               | 55,5  |  |
| 8                     | 16                   | 21,5               | 56    |  |
| 10                    | 20                   | 17,1               | 56    |  |
| 12                    | 24                   | 11,5               | 55,5  |  |
| 14                    | 28                   | 4,5                | 54    |  |
| 14,5                  | 29                   | 2,6                |       |  |





Ao determinar os coeficientes de perda de carga distribuída constatamos que todos os números de Reynolds deram maiores que 4000, portanto  $\alpha$  = 1,0 e aí resultou a tabela abaixo que permite obter a representação gráfica da CCB e CCI.

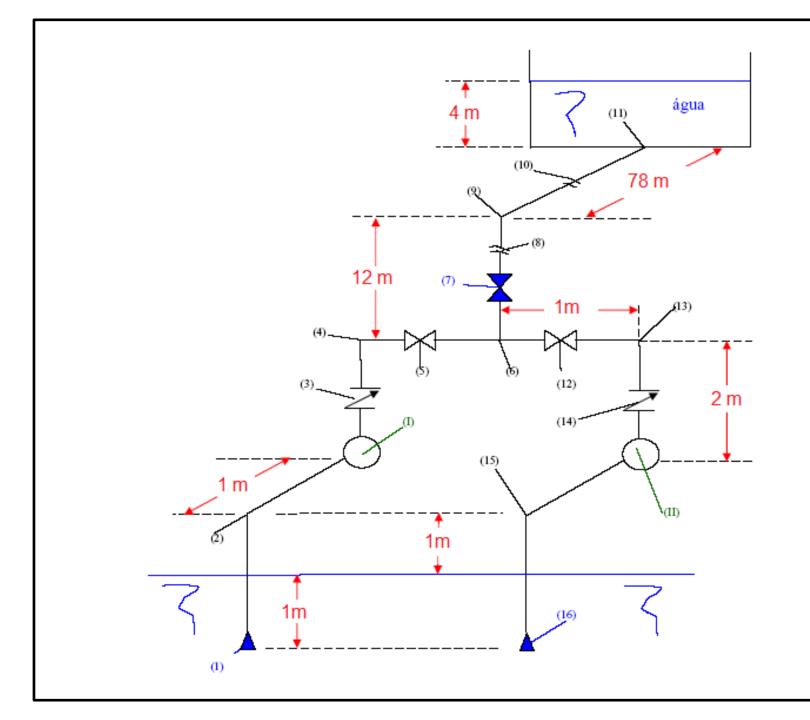
| Q (m <sup>3</sup> /h) | $Q_{ap}$ $(m^3/h)$ | H <sub>B</sub> (m) | h (%) | f <sub>Q/2</sub> | $f_Q$  | HS (m) |
|-----------------------|--------------------|--------------------|-------|------------------|--------|--------|
| 0                     | 0                  | 26                 | -     | 0                | 0      | 3      |
| 2                     | 4                  | 26,8               | 52    | 0,0292           | 0,0259 | 3,6    |
| 4                     | 8                  | 26,3               | 54    | 0,0259           | 0,0236 | 5,2    |
| 6                     | 12                 | 24,6               | 55,5  | 0,0244           | 0,0227 | 7,7    |
| 8                     | 16                 | 21,5               | 56    | 0,0236           | 0,0222 | 11,2   |
| 10                    | 20                 | 17,1               | 56    | 0,0231           | 0,0219 | 15,6   |
| 12                    | 24                 | 11,5               | 55,5  | 0,0227           | 0,0216 | 20,9   |
| 14                    | 28                 | 4,5                | 54    | 0,0224           | 0,0215 | 27,1   |
| 14,5                  | 29                 | 2,6                |       | 0,0224           | 0,0214 | 28,9   |



$$\begin{split} H_S &= H_{Bap} \\ 0,0292Q_{ap}^2 + 0,0448Q_{ap} + 3 = -0,0404Q_{ap}^2 + 0,3651Q_{ap} + 26 \\ 0,0696Q_{ap}^2 - 0,3203Q_{ap} - 23 = 0 \end{split}$$

$$Q_{ap_{\tau}} = \frac{0,3203 + \sqrt{0,3203^2 + 4 \times 0,0696 \times 23}}{2 \times 0,0696} \cong 20,625 \frac{m^3}{h} \approx 20,6 \frac{m^3}{h}$$

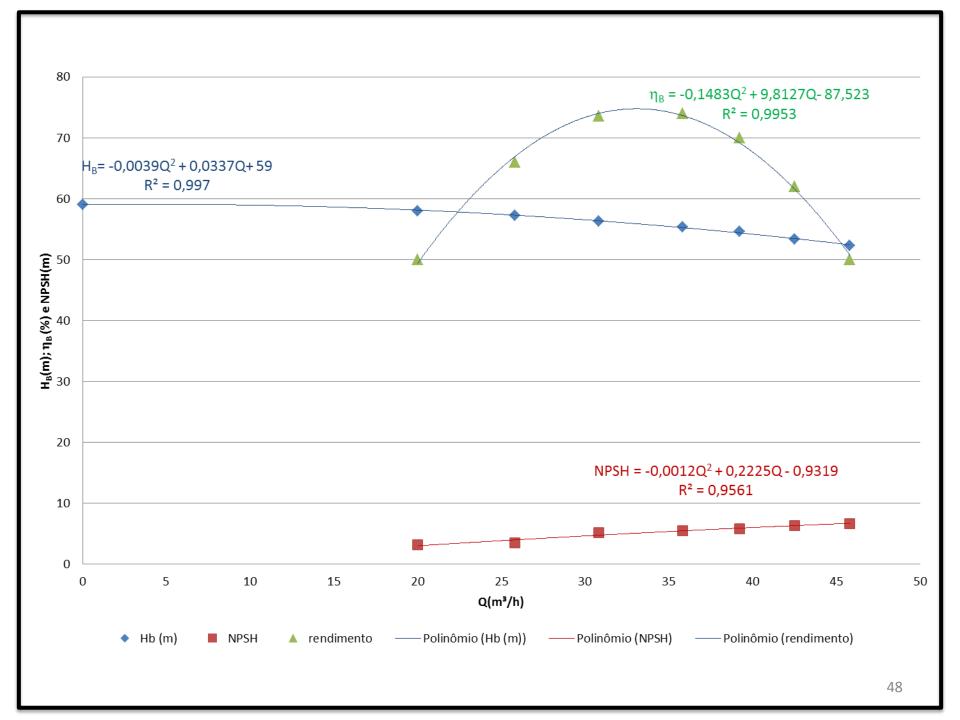
$$H_{Bap_{\tau}} = 0.0292 \times 20.6^2 + 0.0448 \times 20.6 + 3 \cong 16.3 \text{m}$$


$$\eta_{\rm B} = -0.0848 \times \left(\frac{20.6}{2}\right)^2 + 1.5268 \times \frac{20.6}{2} + 49.286 \cong 56.0\%$$

$$N_{\text{Bap}_{\tau}} = \frac{9782,36 \times \left(\frac{20,6}{3600}\right) \times 16,3}{0,56} \cong 1629,3 \text{W}$$

- 80º A instalação representada a seguir pode operar com uma bomba ou com as duas bombas associadas em paralelo. Sabendo-se que as bombas são iguais que apresentam as características indicadas no diagrama do slide 801, pede-se:
- a. a potência útil do motor elétrico quando apenas uma bomba operar; b. verificar o fenômeno de cavitação para a situação anterior, sabendose que a pressão de vapor da água para a situação descrita é igual a 0,0238 kgf/cm² (abs) e que a leitura barométrica é igual a 700 mmHg; c. o ponto de trabalho para associação em paralelo das bombas;
- d. a verificação do fenômeno de cavitação para esta nova situação.

#### Dados:


Tubulação de aço 40, que para a sucção tem um diâmetro nominal de 3"  $(D_{int} = 77.9 \text{ mm e A} = 47.7 \text{ cm}^2)$  e para o recalque tem um diâmetro nominal de 2,5"  $(D_{int} = 62.7 \text{ mm e A} = 30.9 \text{ cm}^2)$ , água a 20°C e aceleração da gravidade igual a 9,8 m/s².



- (1) e (16) válvulas de pé com crivo de 3'' Leq = 20 m
- (2) e (15) joelhos fêmeas de 900 e de 3" Leq = 2,82 m
- (4), (9) e (13) joelhos fêmeas de 900 e de 2,5" Leq = 2,35 m
- (3) e (14) válvulas de retenção verticais de 2.5" Leq = 8.1 m
- (5) e (12) válvulas gavetas de 2,5" Leq = 0,4 m
- (6) tê de saída lateral de 2,5" para o funcionamento com uma bomba Leq = 3,43 m
- (6) tê de saída lateral de 2,5" para o funcionamento da associação em paralelo Leq = 4,16 m
- (7) válvula globo de 2,5" Leq = 21 m
- (8) e (10) representação de corte no desenho da tubulação
- (11) saída da tubulação Leq = 1,9 m
- (I) e (II) bombas centrífugas radiais que apresentam as informações nos gráficos em anexo.

#### **Nota:**

Os trechos de (1) a (6) e de (16) a (6) são idênticos e a tubulação é de aço considerada nova



# Solução

Trata-se de uma instalação com duas entradas e uma saída, adotando-se o PHR nos níveis de captação, tem-se:

$$\gamma \times Q_{ap} \times H_{\text{S}_{ap}} = \gamma \times Q_{ap} \times H_{\text{distribuição}} + 2 \times \gamma \times \frac{Q_{a}}{2} \times H_{p_{3"}} + 2 \times \gamma \times \frac{Q_{a}}{2} \times H_{p_{dB-6}} + \gamma \times Q_{a} \times H_{p_{6-11}}$$

Dividindo-se todos os membros por  $\gamma_x Q_a$  resulta:

$$\begin{split} &H_{sa} = H_{distribuição} + H_{p_{3"}} + H_{p_{depoisda\,bombaat\'e\,6}} + H_{p_{6-11}} \\ &H_{p_{3"}} \rightarrow calculado\ para \frac{Q_a}{2} \\ &H_{p_{depoisda\,bombaat\'e\,6}} \rightarrow calculado\ para \frac{Q_a}{2} \\ &H_{p_{6-11}} \rightarrow calculado\ para\ Q_a \end{split}$$

$$\begin{split} H_{p_{3"}} &= f_{3"}_{p/Q_{a/2}} \times \frac{\left(3 + 20 + 2,82\right)}{0,0779} \times \frac{\left(Q_{a/2}\right)^2}{19,6 \times \left(47,7 \times 10^{-4}\right)^2} \\ H_{p_{3"}} &= f_{3"}_{p/Q_{a/2}} \times 185808,7 \times Q_a^2 \\ H_{p_{2.5"dB-6}} &= f_{2.5"}_{p/Q_{a/2}} \times \frac{\left(3 + 8,1 + 2,35 + 0,4\right)}{0,0627} \times \frac{\left(Q_a/2\right)^2}{19,6 \times \left(30,9 \times 10^{-4}\right)^2} \\ H_{p_{2.5"dB-6}} &= f_{2.5"}_{p/Q_{a/2}} \times 295086,5 \times Q_a^2 \\ H_{p_{2.5"6-11}} &= f_{2.5"}_{p/Q_a} \times \frac{\left(90 + 4,16 + 21 + 2,35 + 1,9\right)}{0,0627} \times \frac{\left(Q_a/2\right)^2}{19,6 \times \left(30,9 \times 10^{-4}\right)^2} \\ H_{p_{2.5"6-11}} &= f_{2.5"}_{p/Q_a/2} \times 10176539,7 \times Q_a^2 \end{split}$$

$$H_{S_{ap}} = 19 + f_{3"_{p}/Q_{a/2}} \times 185808, 7 \times Q_{a}^{2} + f_{2,5"_{p}/Q_{a/2}} \times 295086, 5 \times Q_{a}^{2} + f_{2,5"_{p}/Q_{a}} \times 10176539, 7 \times Q_{a}^{2}$$



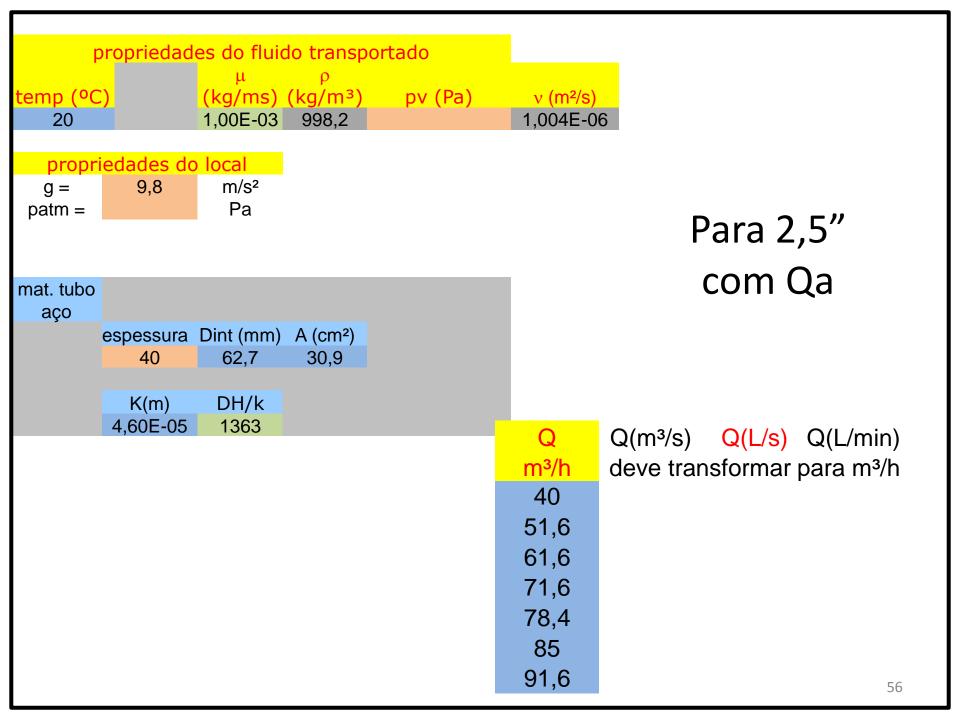
A partir deste ponto determinamos os coeficientes de perda de carga distribuída e traçamos a CCI e CCB para obtenção do ponto de trabalho.

#### propriedades do fluido transportado temp (°C) (kg/ms) (kg/m<sup>3</sup>)pv (Pa) v (m<sup>2</sup>/s) 1,004E-06 20 1,00E-03 998,2 propriedades do local 9,8 m/s<sup>2</sup> g =Pa patm = mat. tubo

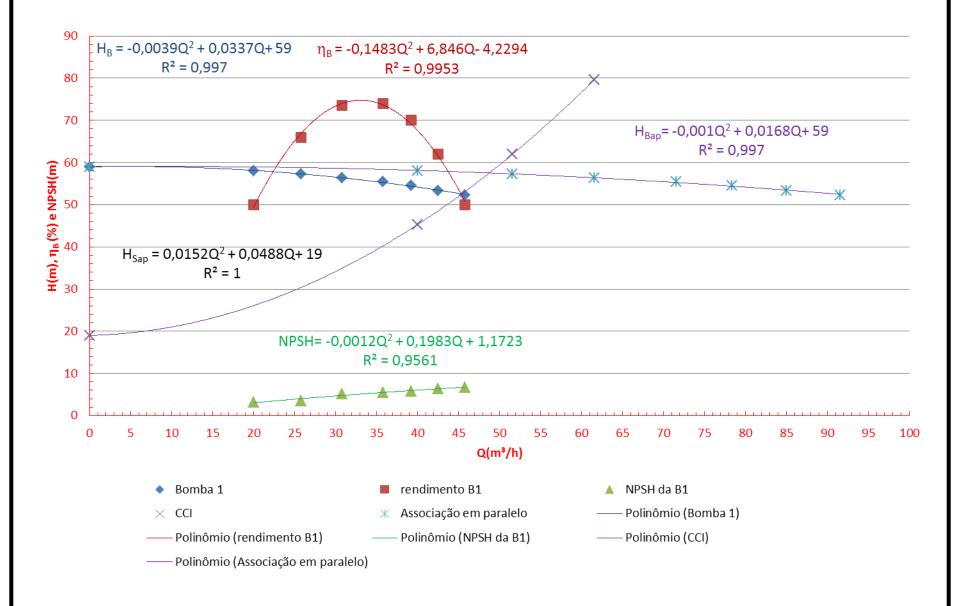
## Para 3"

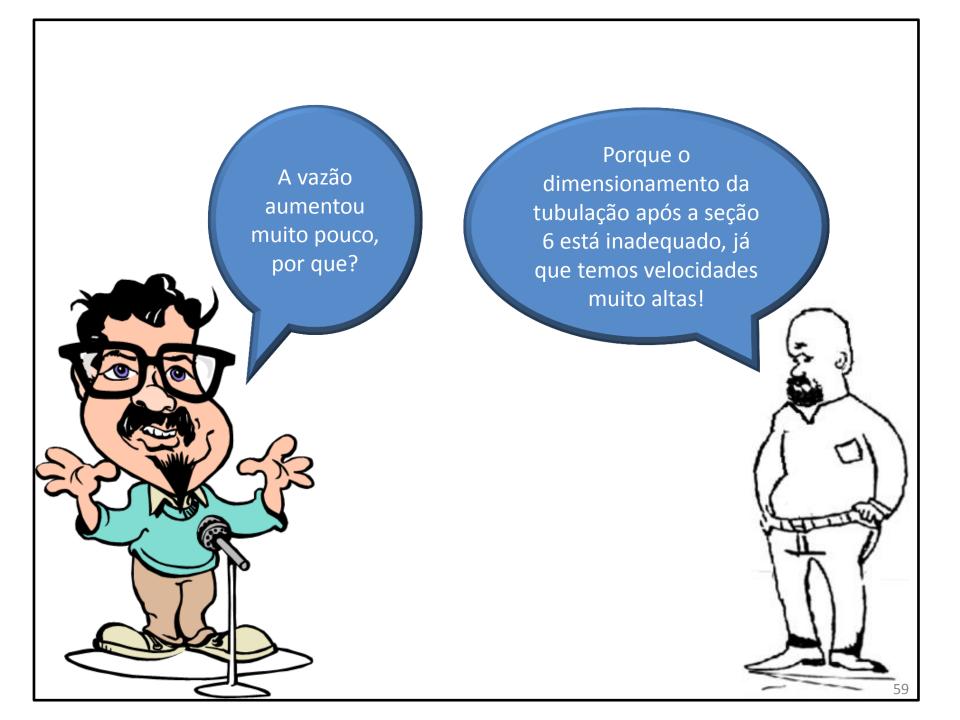
```
mat. tubo
aço

espessura Dint (mm) A (cm²)
40 77,9 47,7

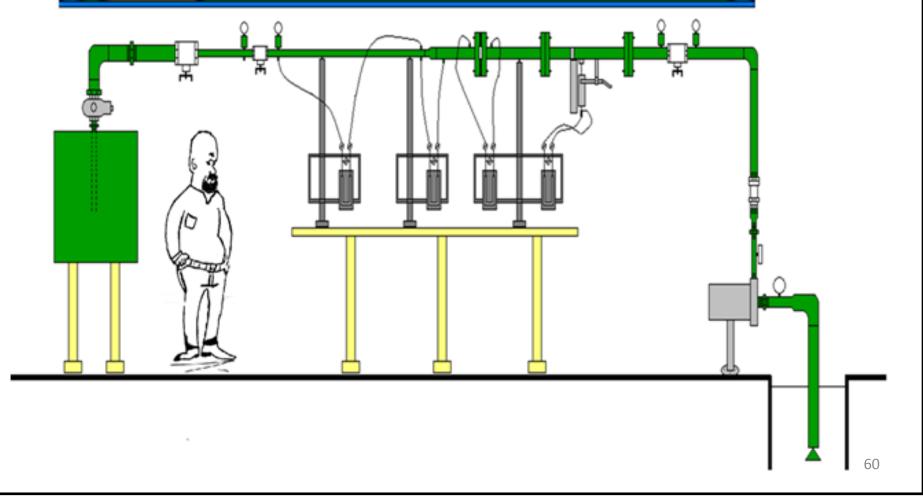

K(m) DH/k
4,60E-05 1693
```

Q (m³/s) Q(L/s) Q(L/min) deve transformar para m³/h
20
25,8
30,8
35,8
39,2
42,5
45,8


| Q(m³/h) | v(m/s) | Re     | f <sub>Haaland</sub> | f <sub>Swamee e Jain</sub> | f <sub>Churchill</sub> | f <sub>planilha</sub> |
|---------|--------|--------|----------------------|----------------------------|------------------------|-----------------------|
| 20,0    | 1,16   | 90368  | 0,0207               | 0,0211                     | 0,0211                 | 0,0209                |
| 25,8    | 1,50   | 116574 | 0,0201               | 0,0204                     | 0,0204                 | 0,0203                |
| 30,8    | 1,79   | 139166 | 0,0197               | 0,0200                     | 0,0201                 | 0,0199                |
| 35,8    | 2,08   | 161758 | 0,0194               | 0,0198                     | 0,0198                 | 0,0196                |
| 39,2    | 2,28   | 177121 | 0,0193               | 0,0196                     | 0,0196                 | 0,0195                |
| 42,5    | 2,47   | 192031 | 0,0191               | 0,0195                     | 0,0195                 | 0,0193                |
| 45,8    | 2,67   | 206942 | 0,0190               | 0,0193                     | 0,0193                 | 0,0192                |


#### propriedades do fluido transportado temp (°C) (kg/ms) (kg/m<sup>3</sup>)pv (Pa) v (m<sup>2</sup>/s) 1,00E-03 20 998,2 1,004E-06 propriedades do local 9,8 m/s<sup>2</sup> g =Pa patm = Para 2,5" com Qa/2 mat. tubo aço espessura Dint (mm) A (cm²) 40 62,7 30,9 DH/k K(m) 4,60E-05 1363 $Q(m^3/s)$ Q(L/s) Q(L/min)Q deve transformar para m³/h m<sup>3</sup>/h 20 25,8 30,8 35,8 39,2 42,5 45,8 54

| Q(m³/h) | v(m/s) | Re     | f <sub>Haaland</sub> | f <sub>Swamee</sub> e Jain | f <sub>Churchill</sub> | <b>f</b> planilha |
|---------|--------|--------|----------------------|----------------------------|------------------------|-------------------|
| 20,0    | 1,80   | 112280 | 0,0207               | 0,0211                     | 0,0211                 | 0,0210            |
| 25,8    | 2,32   | 144841 | 0,0202               | 0,0206                     | 0,0206                 | 0,0205            |
| 30,8    | 2,77   | 172911 | 0,0200               | 0,0203                     | 0,0203                 | 0,0201            |
| 35,8    | 3,22   | 200981 | 0,0197               | 0,0201                     | 0,0201                 | 0,0199            |
| 39,2    | 3,52   | 220069 | 0,0196               | 0,0199                     | 0,0199                 | 0,0198            |
| 42,5    | 3,82   | 238595 | 0,0195               | 0,0198                     | 0,0198                 | 0,0197            |
| 45,8    | 4,12   | 257121 | 0,0194               | 0,0197                     | 0,0197                 | 0,0196            |




| Q(m³/h) | v(m/s) | Re     | <b>f</b> <sub>Haaland</sub> | f <sub>Swamee e Jain</sub> | f <sub>Churchill</sub> | <b>f</b> planilha |
|---------|--------|--------|-----------------------------|----------------------------|------------------------|-------------------|
| 40,0    | 3,60   | 224560 | 0,0196                      | 0,0199                     | 0,0199                 | 0,0198            |
| 51,6    | 4,64   | 289683 | 0,0193                      | 0,0196                     | 0,0196                 | 0,0195            |
| 61,6    | 5,54   | 345823 | 0,0192                      | 0,0194                     | 0,0194                 | 0,0193            |
| 71,6    | 6,44   | 401963 | 0,0190                      | 0,0193                     | 0,0193                 | 0,0191            |
| 78,4    | 7,05   | 440138 | 0,0190                      | 0,0192                     | 0,0192                 | 0,0191            |
| 85,0    | 7,64   | 477190 | 0,0189                      | 0,0191                     | 0,0191                 | 0,0190            |
| 91,6    | 8,23   | 514243 | 0,0189                      | 0,0191                     | 0,0191                 | 0,0190            |





Proponha alterações na instalação anterior para melhorar a vazão obtida com a associação em paralelo e resolva os itens c) e d) novamente. Resolva também o item a) e b) e compare as CCIs para o funcionamento da bomba só e para a associação em paralelo.

