Gabarito da P1 de ME5330 - turma B

1ª Questão:

<u>Dados:</u> vazão desejada de 45 L/s e tubulação após a bomba de aço 40S (K = 0,02 mm) velocidade econômica aproximadamente igual a 2,5 m/s, a partir do mesmo, temos:

$$Q = v \times A \Rightarrow \frac{45}{1000} = 2.5 \times \frac{\pi \times D_{ref}^2}{4} \therefore D_{ref} = \left[\sqrt{\frac{45 \times 10^{-3} \times 4}{2.5 \times \pi}} \right] \times 10^3$$

$$D_{ref} \cong 151,4mm \rightarrow (0,5)$$

Diâmetro nominal (pol) Diâmetro externo (mm)	Designação de espessura. (v. Nota 2)	Espessura de parede (mm)	Diâmetro interno (mm)	Area da seção livre (cm²)	Area da seção de metal (cm²)	Superficie externa (m²/m)		roximado g/m) Conteúdo de água	Moment o de inércia (cm [‡])	Momento resistente (cm³)	Raio de giração (cm)
6 depois da bomba	10S Std, 40, 40S XS, 80, 80S 120 160 XXS	3,40 7,11 10,97 14,3 18,2 21,9	161,4 154,0 146,3 139,7 131,8 124,4	204,5 186,4 168,2 153,4 136,4 121,5	17,6 36,0 54,2 69,0 86,0 100,9	0,535	13,82 28,23 42,51 54,15 67,41 79,10	20,45 18,64 16,82 15,34 13,64 12,15	599,37 1171,3 1685,7 2064,5 2455,8 2759,6	71,30 139,32 200,45 245,52 291,91 328,29	5,83 5,70 5,58 5,47 5,34 5,23
		Dref	151,4								
8 antes da bomba	10S Std, 40, 40S 60 XS, 80, 80S 120 XXS 160	3,76 8,18 10,3 12,7 18,2 22,2 23,0	211,5 202,7 198,4 193,7 182,6 174,6 173,1	351,6 322,6 309,1 294,8 261,9 239,4 235,5	25,4 54,2 67,6 82,3 115,1 137,4 141,7	0,692	19,93 42,48 53,03 64,56 90,22 107,8 111,1	35,16 32,26 30,91 29,48 26,19 23,94 23,55	1473,4 3017,7 3696,1 4399,5 5852,2 6742,9 6905,3	134,56 275,52 337,31 401,88 534,31 616,26 631,02	7,62 7,46 7,39 7,31 7,13 7,00 6,98

Singularidades antes (8"0u 200) e depois da bomba (6"ou 150)

		COMPONIENTE	L/D						DU	ÂΜ	ETI:	20	NO	DM	INA	L	. (mm)								
	C	COMPONENTE		15	20	25	32	40	50	65	80	90	100	125	150	200	250	300	350	400	500				
	45°	padrão	16	0,2	0,3	0,4	0,5	0,6	0,8	1,0	1,2	1,4	1,6	2.0	24	3,2	4,0	4.8	5,6	6.4	7,6				
	中	raio longo	10	0.1	0,2	0,3	0,3	0,4	0.5	0,6	0.8	29	1.0	1,5	1,5	2.0	2.5	3,0	3,5	4,0	4.8				
(A	90°	padrão	30	0.4	Q6	0,8	1,0	1.1	1.5	1,9	22	27	3.0	3.8	4.5	6.0	7.5	9,0	10,5	12	14				
COTOVELOS	a	raio médio	25	0.3	0.5	0.6	0.8	1,0	1,2	1,6	1,9	22	25	3.1	3.8	5.0	6.2	7,5	8.8	10	12				
000	90°	raio longo	20	0.3	0.4	0.5	as	0.8	1,0	1,3	1,5	1.8	20	25	30	4.0	5.0	6.0	7,0	8.0	9,6				
		esquadro	57	97	1,4	1,8	2.7	22	28	3,6	43	51	57	7,1	86	11,4	14,2	17,1	20.0	22,8	27				
	100° #	padrão	85	1,1	1,6	2,1	2,7	3,2	4.2	5,4	6.4	7,6	8,5	10,6	128	17,0	21,2	25,5	29,8	34,0	41				
	180°	raio longo	55	0,7	1,0	1,4	1.8	2,1	28	3,5	4,1	5,0	5,5	6,9	8,2	11,0	13,8	16,5	19,2	22.0	27				
	expansão entre o	1,33 D	- 10	aı	0,2	0,3	0,3	0,4	0,5	0,6	0,8	0,9	1.0	1,5	1,5	20	2,5	3,0	3,5	4,0	4,8				
ALTERAÇÕES BRUSCAS DE SECÇÃO	diâmetro D. o o final	2 D	30	0,4	0,6	0,8	1,0	1,1	1,5	1,9	2,2	2.7	3,0	3.8	4,5	6,0	7,5	9,0	105	12	14				
55%		4 D	48	Qó	09	1,2	1,5	1,8	24	3,0	3,6	4,3	48	60	7,2	9.6	12.0	14.4	16.8	19.2	23				
AS D	contração entre o	Q.75 D	10	0,1	0,2	0,3	0,3	0,4	0,5	0,6	0.8	9	1,0	1.5	1,5	20	2,5	3,0	3,5	40	4,8				
Sursc	diámetro D e o final	0.50 D	10	0,2	0,3	0,4	0,5	0,6	0,0	1,1	1,3	1,5	1,7	21	26	3,4	43	5.1	6.0	6,8	8,1				
187	-	0.25 D	24	0.3	0,5	0,6	0,8	0,9	1,2	1,5	1,8	22	2.4	3.0	3,6	4,8	6,0	7,2	8.4	9,6	11				
SA/DA DE	a 90°	canto vivo	50	0,7	1,0	1,2	1.6	1,9	25	3,2	3.8	4,5	5,0	6.2	7.5	100	12,5	15,0	15,0	20,0	24				
EQUIPA- MENTO	G.	reentrante	50	0.7	1,0	1,2	1,5	1,9	25	3,2	3.8	4.5	5.0	6,2	7.5	10,0	125	15,0	15,0	20.0	24				
ENTRADA DE	•	canto vivo	25	аз	0,5	0,7	0.8	1,0	1,3	23	2.0	23	2,6	3.3	3,9	5,2	6,5	7,8	9,1	10,4	12				
EQUIPA- MENTO	0 90°	reentrante	40	0,5	0,8	1,0	1.3	1,5	20	2.5	3.0	3.6	4.0	5,0	6.0	8.0	100	120	14,0	16,0	19				

		СОМРО	NENTE	L/D						D	ÂM	1ETA	20	NO	MIN	IAL	(1	mm)				
	,	CONTO	VEIVIE	aprox. m/m	15	20	25	32	40	50	65	80	90	100	125	150	200	250	300	350	400	500	60
	中	66	90°	145	1,9	2.8	36	4,6	5,5	7,3	9,1	109	13.1	14,5	18.1	21,8	29,0	36,2	43,5	50,8	58	69	84
		ångular (aberta)	Y 45°	145	1,9	2,8	3,6	4.6	5,5	7.3	21	10.9	13,1	14,5	18,1	21,8	29,0	35,2	43,5	50,8	58	69	84
	ੇ ਦ	90	Y 60°	175	2,3	3.3	4,4	5,6	6.7	8.8	11,0	13,1	15,8	17,5	21,9	26.2	35.0	43,8	52,5	61,2	70	84	100
	-	borbale	ita (80% de obertura)	40	0,5	0.8	1,0	1,3	1,5	20	2,5	3,0	3.6	4.0	5,0	6.0	8,0	10,0	120	14,0	16.0	19	23
	1	de pé	com crivo	420	5,5	8,0	10.5	13,4	16.0	21,0	26,5	31,5	37,8	42,0	52,5	63,0	84.0	105	126	147	168	201	242
		diafrag	ma (aberla)	85	1,1	1,6	21	27	3.2	42	5,4	6.4	7,6	8.5	10,6	128	17.0	21.2	25.5	29,8	34	41	49
		esfera ((aberta)	3	0.1	0.1	0.1	Q1	aı	0.2	02	0.2	0.3	аз	04	0.4	0.6	0.8	0.9	1.0	1.2	1.4	1.7
VÁLVULAS	I.	gaveta	(aberta)	8	0.1	0,2	0.2	аз	0,3	0.4	0,5	0.6	0.7	0.8	1,0	1,2	1.6	20	24	28	3.2	3,8	4,6
	I I	globo ((aberta)	350	46	6,6	8,8	11,2	13,3	17,5	22.1	26,2	31,5	35,0	43,8	52.5	70,0	87,5	105	122	140	167	201
3	A ARM	macho	duas vias (escoamento direto)	44	Qó	0,8	1,1	1,4	1,7	2.2	2,8	3,3	4.0	4.4	5,5	46	8,8	11,0	13,2	15,4	17,6	21	25
	II LI	modro	três vias (saída lateral)	140	1,8	2,7	3,5	4,5	5,3	7,0	8,8	10,5	12,6	14,0	21,0	25,2	35,0	42,0	49,0	50,8	56,0	67	80
			tipo portinhola	135	1,8	2,6	3,4	4,3	5,1	6,8	8,5	10,0	12,2	13,5	14,9	20.2	27,0	33,8	40,5	47,3	54,0	64	78
		retenção	de levantamento	350	4.6	6.6	8.8	11,2	133	17.5	22.1	26,2	31,5	35.0	43.8	52.5	70,0	87.5	105	122	140	167	201
	000		de estera (horizontal)	150	20	29	3.8	4.8	5,7	7.5	9,5	11,3	13,5	15,0	18,8	22,5	30.0	37.5	45,0	52,5	60,0	72	86
	A		escoamento longo	20	аз	0.4	0.5	Q6	0.8	1.0	1.3	1.5	1.8	20	25	3.0	4.0	5.0	6.0	7.0	8.0	9.6	12
TES			saída lateral	60	0.8	1,1	1,5	1,9	23	3.0	3,8	4,5	5,4	6.0	7,5	9.0	12,0	15.0	18,0	21,0	24.0	29	35
	早		entrada lateral	80	1,0	1,5	2.0	26	3.0	4.0	5,0	6,0	7.2	8,0	10,0	120	16,0	20.0	24.0	28,0	32.0	38	46
luva ou	união IIII.			1,7	des	prez	ivel	Q1	0.1	0.1	0.1	0.1	0,2	0.2	0.2	0,3	0.3	0.4	0.5	0.6	0.7	0.8	1,0
filtro de	linha 🗐			320	42	6.1	8.0	10.2	12.2	160	20.2	24.0	28.8	320	ann	48.0	640	80.0	94.0	112	128	153	18/

Trecho de sucção (tubulação antes da bomba):

$$L + \sum Leq = 12 + 10 + 1,6 = 23,6 \text{ m}$$

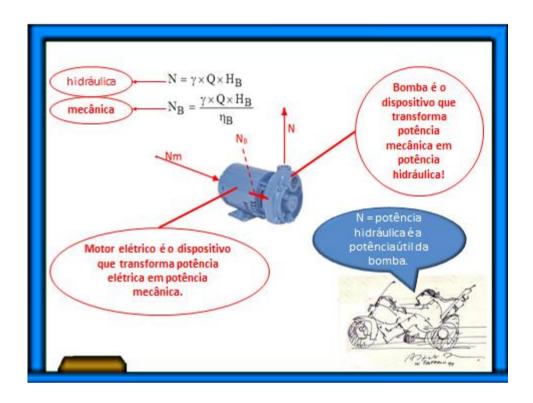
Trecho de recalque (tubulação depois da bomba):

$$L + \sum Leq = 1100 + 20,2 + 52,5 + 3,9 + 2 \times 3,8 = 1184,2 \text{ m}$$

Com o P.H.R. no eixo da bomba

$$\begin{split} H_{inicial} + H_B &= H_{final} + H_{PT} \\ 5 + H_B &= 20 + \left(\frac{f_{aB} \times 23.6 \times (45 \times 10^{-3})^2}{19.6 \times 0.2027 \times (322.6 \times 10^{-4})^2}\right) + \left(\frac{f_{dB} \times 1184.2 \times (45 \times 10^{-3})^2}{19.6 \times 0.154 \times (186.4 \times 10^{-4})^2}\right) \end{split}$$

Pela planilha do site temos os valores do coeficiente de perda de carga distribuída:


$$f_{aB} = 0.0206 \rightarrow (0.25)$$

$$f_{dB} = 0.0197 \rightarrow (0.25)$$

Retornando na equação da energia:

$$5 + H_{B} = 20 + \left(\frac{0,0206 \times 23,6 \times (45 \times 10^{-3})^{2}}{19,6 \times 0,2027 \times (322,6 \times 10^{-4})^{2}}\right) + \left(\frac{0,0197 \times 1184,2 \times (45 \times 10^{-3})^{2}}{19,6 \times 0,154 \times (186,4 \times 10^{-4})^{2}}\right)$$

$$H_{\rm B} = 20 - 5 + 0.238... + 45.045... \cong 60.3m \rightarrow (0.5)$$

Calculando a potência hidráulica:

$$N = \gamma \times Q \times H_{B}$$

$$N = 879 \times 9.8 \times 4.5 \times 10^{-3} \times 60.3$$

$$N\cong 23374,7W \rightarrow \quad (0,5)$$

2ª Questão:

a. Qual a vazão de gueda livre? Haverá necessidade da bomba?

Para que possamos responder esta pergunta, primeiro temos que conhecer a equação da CCI e nela a carga estática tem que ser negativa.

Para o problema foi afirmado que: "a equação da CCI, que também foi determinada corretamente resultou na tabela a seguir":

Q(m³/h)	H _s (m)
0	-14,90
290	-1,81
696	41,2

Equação da CCI: $H_S = A \times Q^2 + B \times Q + C$

Resolvendo sem recorrer ao Excel

<u>Primeira condição de contorno</u>: para Q = 0 temos que H_S = -14,9 m, portanto:

$$-14.9 = a \times 0 + b \times 0 + c$$
 : $c = -14.9m$

Segunda condição de contorno: para Q =290m³/h temos que H_S = -1,81 m, portanto:

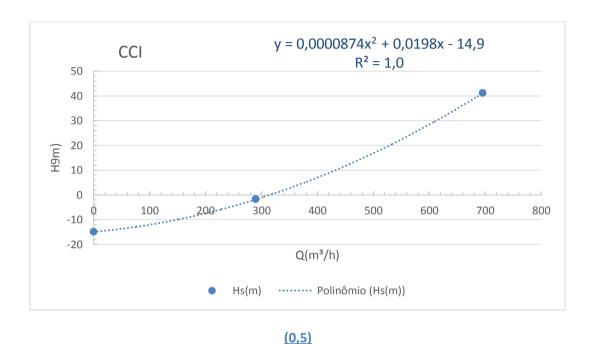
$$-1.81 = a \times 290^{2} + b \times 290 - 14.9$$
$$a \times 290^{2} + b \times 290 = 13.09 \rightarrow (I)$$

Terceira condição de contorno: para Q =696m³/h temos que H_S = 41,2 m, portanto:

$$41,2 = a \times 696^{2} + b \times 696 - 14,9$$
$$a \times 696^{2} + b \times 696 = 56,1$$
$$b = \frac{56,1}{696} - 696 \times a \rightarrow \text{(II)}$$

De (II)em (I), temos:

$$13,09 = a \times 84100 + \left(\frac{56,1}{696} - 696 \times a\right) \times 290$$

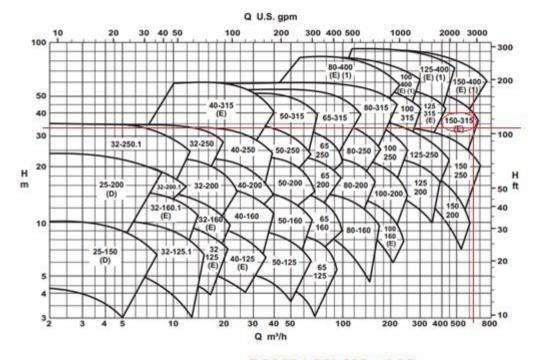

$$84100a - 201840a = -10,285$$

$$a = 0,0000874 + \frac{h^2}{m^5} \Rightarrow b \approx 0,0198 + \frac{h}{m^2}$$

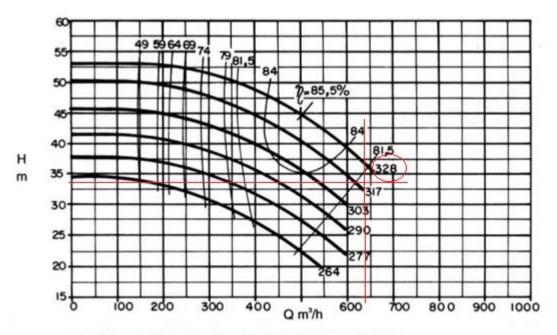
$$CCI \rightarrow H_S = 0,0000874 \times Q^2 + 0,0198 \times Q - 14,9 \rightarrow (0,5)$$

Resolvendo pelo Excel

Q(m³/h)	Hs(m)
0	-14,9
290	-1,81
696	41,2

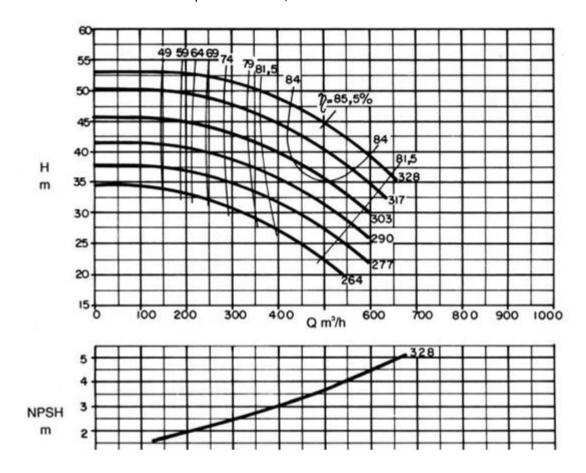

Para ambos os casos a vazão em queda livre é obtida para $H_S = 0$, ou seja, quando a CCI cruza o eixo da vazão, portanto:

$$\begin{split} 0 &= 0,\!0000874 \times Q_{qL}^2 + 0,\!0198 \times Q_{qL} - 14,\!9 \\ Q_{qL} &= \frac{-0,\!0198 + \sqrt{0,\!0198^2 + 4 \times 0,\!0000874 \times 14,\!9}}{2 \times 0,\!0000874} \cong 314,\!9 \, \frac{m^3}{h} \Rightarrow \left(0,\!25\right) \end{split}$$


Como a vazão de queda livre é menor que a vazão desejada há a necessidade da bomba (0,25)

b. Qual a bomba da KSB, o seu diâmetro do rotor e o seu ponto de trabalho baseado nos diagramas a seguir?

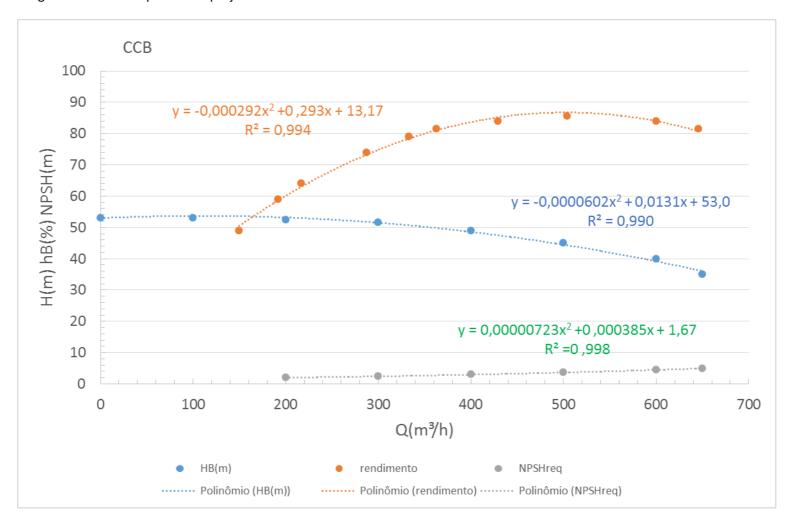
$$\begin{split} Q_{projeto} &= 1.1 \times Q_{desejada} = 1.1 \times 580 = 638 \frac{m^3}{h} \Rightarrow (0.25) \\ H_{B_{projeto}} &= H_{S_{projeto}} = 0.0000874 \times 638^2 + 0.0198 \times 638 - 14.9 \\ H_{B_{projeto}} &= H_{S_{projeto}} \cong 33.31 \text{m} \approx 33.4 \text{m} \Rightarrow (0.25) \end{split}$$


BOMBA 150-315 - (0,25)

Bomba com diâmetro de rotor de 328 mm - (0,25)

Resolvendo pelo Excel

Através das curvas fornecidas pelo fabricante, obtemos as tabelas:

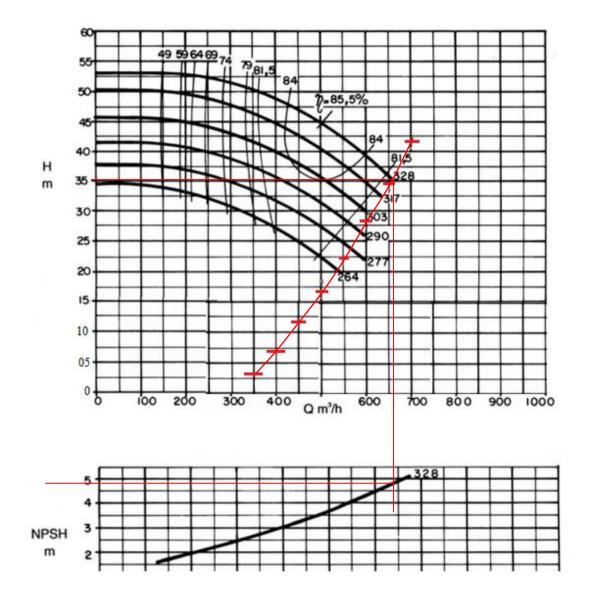


Q(m³/h)	H _B (m)
0	53
100	53
200	52,5
300	51,5
400	49
500	45
600	40
650	35

Q(m³/h)	η _в (m)
150	49
191,66	59
216,68	64
287,49	74
333,32	79
362,51	81,5
429,19	84
504,17	85,5
600	84
645,83	81,5

Q(m³/h)	NPSH(m)
200	2
300	2,5
400	3
500	3,6
600	4,5
650	5

E através delas os gráficos e suas respectivas equações:


No ponto de trabalho, temos:

$$\begin{split} &H_B = H_S \\ &- 0,0000602 \times Q^2 + 0,0131 \times Q + 53 = 0,0000874 \times Q^2 + 0,0198 \times Q - 14,9 \\ &1,476 \times 10^{-4} \times Q^2 + 6,7 \times 10^{-3} \times Q - 67,9 = 0 \\ &Q_\tau = \frac{-6,7 \times 10^{-3} + \sqrt{\left(6,7 \times 10^{-3}\right)^2 + 4 \times 1,476 \times 10^{-4} \times 67,9}}{2 \times 1,476 \times 10^{-4}} \cong 655,9 \frac{m^3}{h} \to \left(0,25\right) \\ &H_{B_\tau} = 0,0000874 \times 655,9^2 + 0,0198 \times 655,9 - 14,9 \cong 35,7m \to \left(0,25\right) \\ &\eta_{B_\tau} = -0,000292 \times 655,9^2 + 0,293 \times 655,9 + 13,17 \cong 79,7\% \to \left(0,25\right) \\ &NPSH_{req} = 0,00000723 \times 655,9^2 + 0,000385 \times 655,9 + 1,67 \cong 5,1m \to \left(0,25\right) \\ &N_{B_\tau} = \frac{808,1 \times 9,8 \times \left(\frac{655,9}{3600}\right) \times 35,7}{0,797} \cong 64630,3W \to \left(0,25\right) \end{split}$$

Resolvendo sem recorrer ao Excel

$$CCI \rightarrow H_S = 0.0000874 \times Q^2 + 0.0198 \times Q - 14.9$$

Q(m³/h)	H _B (m)
350	2,7
400	7,0
450	11,7
500	16,9
550	22,4
600	28,4
650	34,9
700	41,8

$$Q_{\tau} \cong 660 \frac{m^3}{h} \rightarrow (0.25)$$

$$H_{B_{\tau}} \cong 35,1m \rightarrow (0,25)$$

$$\eta_{\rm B_{ au}} \cong 80\% \rightarrow (0.25)$$

$$NPSH_{req} \cong 4.9m \rightarrow (0.25)$$

$$N_{B_{\tau}} = \frac{808.1 \times 9.8 \times (660/3600) \times 35.1}{0.80} \cong 63701.5W \rightarrow (0.25)$$

c. Ocorre o fenômeno de cavitação? Justifique.

Para não existir o fenômeno de cavitação a condição necessária e suficiente é:

$$NPSH_{disponível} - NPSH_{requerido} \ge 0$$
 $NPSH_{disponível} = z_{inicial} + \frac{p_{inicial}}{\gamma} - p_{vapor}}{\gamma} - H_{paB}$
 $z_{inicial} \Rightarrow com o PHR no eixo da bomba$

<u>Dados</u>: pressão atmosférica local igual a 101325 Pa; pressão no nível do fluido na torre de destilação atmosférica igual a 1,8 kgf/cm²; propriedades do fluido: massa específica igual a 808,1 kg/m³; viscosidade igual a 0,00144 Pa*s e pressão de vapor 2,83 kgf/cm² (abs); tubulação antes da bomba constituída de: <u>uma</u> saída de equipamento com canto vivo, <u>duas</u> válvulas gavetas, <u>um</u> filtro de linha, <u>dois</u> cotovelos de 90° de raio longo, <u>um</u> tê de saída de lado, <u>quatro</u> uniões e um <u>comprimento de tubulação</u> igual a 22,1 m; <u>com PHR no eixo da bomba</u> a cota do nível mínimo da torre de destilação atmosférica é igual a 6,6 m.

As tubulações foram bem dimensionadas e optou-se por tubos de aço comercial (K = 0,000046 m) com espessura 80 e resultaram para a tubulação antes da bomba um diâmetro nominal de 14" (350) e para depois da bomba um diâmetro nominal de 12".

7 62,57 121,7 15983 786,72 14,15 93,12 117,8 23392 1152,2 14,05
123,2 114,0 30468 1499,7 13,92 159,9 109,3 38834 1911,1 13,79 203,0 103,8 48158 2370,0 13,64 245,3 98,46 56815 2796,1 13,46

$$D_{int} = 363,6mm \Rightarrow A = 1038,1cm^2$$

 \Rightarrow $f_{aB}=0.0153$ \Rightarrow para as duas vazões, ou seja 655,9m³/h ou 660 m³/h \rightarrow (0,25)

Comprimentos Equivalentes em Metros de Tubo Reto Classe 40

		СОМРО	NENTE	L/D						D	IÂM	ETR	20	NO	MIN	IAL	(1	mm)				
		CONT. C.	(VL) VIL	aprox. m/m	15	20	25	32	40	50	65	80	90	100	125	150	200	250	300	350	400	500	60
	+	66	90°	145	1,9	2.8	36	4,6	5.5	7.3	9,1	10,9	13,1	14,5	18.1	21,8	29,0	36.2	43,5	50,8	58	69	84
		ângular (aberta)	Y 45°	145	1,9	2,8	3,6	4,6	5,5	7,3	9,1	10,9	13,1	14,5	18,1	21,8	29.0	36,2	43,5	50,8	58	69	84
	ੈਂ ਜ਼	90	Y 60°	175	2,3	3.3	4,4	5,6	6,7	8.8	11,0	13,1	15,8	17,5	21,9	26.2	35,0	43,8	52,5	61,2	70	84	100
7	-	borbale	nta (80% de abertura)	40	0,5	0,8	1,0	1,3	1,5	20	2,5	3,0	3.6	4,0	5,0	6.0	8.0	10,0	120	14,0	16,0	19	23
	I	de pé	com crivo	420	5,5	8,0	10,5	13,4	16,0	21,0	26,5	31,5	37,8	42,0	52,5	63,0	84,0	105	126	147	168	201	24.
	TI.	diafrag	ma (aberta)	85	1,1	1,6	21	27	3,2	4.2	5.4	6.4	7,6	8.5	10,6	128	17.0	21.2	25.5	29,8	34	41	49
40	-	esfera	(aberta)	3	0.1	0.1	0.1	aı	0.1	0.2	0.2	0.2	0.3	0.3	0.4	0.4	0.6	0.8	0.9	1.0	1,2	1,4	1.7
1.AS	I.	gaveta	(aberta)	8	0.1	0,2	0.2	0.3	0,3	0.4	0.5	0.6	0.7	0.8	1.0	1,2	1.6	20	24	28	3.2	3,8	4,0
VÁLVULAS	I II	globo	(aberta)	350	4.6	6,6	8,8	11,2	13,3	17,5	22.1	26,2	31,5	35,0	43,8	52,5	70,0	87,5	105	122	140	167	201
3	-	macho	duas vias (escoamento direto)	44	Qó	0,8	1,1	1.4	1,7	22	2,8	3,3	4.0	4,4	5,5	do	8,8	11,0	13,2	15,4	17,6	21	25
	I A	mouno	trēs vias (saida lateral)	140	1,8	2,7	3,5	4,5	5,3	7,0	8,8	10,5	12,6	14,0	21,0	25,2	35,0	42,0	49,0	50,8	56,0	67	80
			tipo portinhola	135	1,8	2,6	34	4,3	5,1	48	8,5	10,0	12,2	13,5	14,9	20,2	27,0	33,8	40,5	47,3	54,0	64	78
	1	retenção	de levantamento	350	4.6	6.6	8.8	11.2	13.3	17,5	22.1	26.2	31,5	35.0	43,8	52.5	70,0	87.5	105	122	140	167	201
	0		de estera (horizontal)	150	20	29	38	4.8	5,7	7.5	9,5	11.3	13,5	15,0	18,8	22.5	30,0	37.5	45.0	52,5	60.0	72	86
			escoamento longo	20	Q3	0.4	0.5	Q.6	0.8	1.0	1.3	1,5	1.8	20	25	3.0	4.0	5.0	6.0	7.0	8.0	9.6	12
TES	•		saída lateral	60	0,8	1,1	1,5	1,9	23	3.0	3,8	4,5	5,4	6.0	7,5	9,0	12,0	15,0	18,0	21.0	24.0	29	35
1000	(F		entrada lateral	80	1,0	1,5	20	26	3,0	40	5,0	6,0	7,2	8,0	10,0	120	16,0	20,0	24.0	28,0	320	38	46
tuva ou	0-			1,7	des	prez	ivel	Q1	0.1	0.1	0.1	0.1	0,2	0.2	0.2	0.3	аз	0.4	0.5	0.6	0.7	0.8	1,0
filtro de	linha 🖳			320	42	6.1	8.0	10,2	122	16,0	20,2	24.0	28,8	32,0	10,0	48,0	64.0	80,0	90,0	112	128	153	184

Apêndice C-10

APÊNDICE

		OMPONENTE	L/D						DU	ÂΜ	ETI	20	NO	MC	NA	\L	(m	nm)		
	C	OWPONENTE	aprox. m/m	15	20	25	32	40	50	65	80	90	100	125	150	200	250	300	350	400	500
	45°	padrão	16	0.2	0,3	0,4	Q5	0,6	0,8	1,0	1,2	1,4	1,6	20	24	3,2	4,0	4.8	5,6	6.4	7,6
	45- 年	raio longo	10	aı	0,2	0,3	0,3	0,4	0,5	0,6	0.8	29	1.0	1,5	1,5	2.0	2.5	3,0	3.5	4,0	4.8
(A	#	podrão	30	0.4	Qó	0.8	1,0	1.1	1,5	1,9	22	27	3.0	3.8	4,5	6.0	7,5	9,0	10,5	12	14
COTOVELOS	a a	raio módio	25	аз	0.5	0,6	0.8	1,0	1,2	1,6	1,9	22	25	3.1	3.8	5.0	6.2	7,5	8,8	10	12
000	90°	raio longo	20	аз	0.4	0,5	aь	0.8	1,0	1.3	1.5	1.8	20	25	3.0	4.0	5.0	6.0	7,0	8.0	9,6
		esquadro	57	0.7	1,4	1,8	27	22	2.8	3,6	4.3	51	57	7,1	8,6	11,4	14,2	17,1	20.0	22,8	27
	· 45)	padrão	85	1,1	1,6	2,1	2.7	3,2	4.2	5,4	6,4	7,6	8,5	10,6	12,8	17,0	21,2	25,5	29,8	34,0	41
	180°	raio longo	55	0,7	1,0	1,4	1,8	2,1	28	3,5	41	5,0	5,5	6,9	8,2	11,0	13,8	16,5	19,2	22.0	27
	expansão entre o	1,33 D	10	0,1	0,2	0,3	0,3	0,4	0,5	0,6	Qв	0,9	1,0	1,5	1,5	2.0	2,5	3,0	3,5	4,0	4.8
58	diāmetro D a o final	2 D	30	0,4	0,6	0,8	1.0	1,1	1,5	1,9	22	27	3,0	3.8	4.5	6.0	7.5	9,0	105	12	14
ALTERAÇÕES BRUSCAS DE SECÇÃO		4 D	48	Qó	Q9	1,2	1,5	1,8	24	3,0	3,6	4,3	4.8	6.0	7.2	9,6	120	14.4	16,8	19.2	23
ASD	contração entre o	0.75 D	10	0.1	0,2	0,3	0,3	0,4	0,5	0,6	ав	0,0	1,0	1,5	1,5	2,0	25	3,0	3,5	40	4.8
Surs	diâmetro D e o final	0,50 D	10	0.2	0,3	0,4	0,5	0.6	0,9	1.1	1,3	1,5	1,7	21	26	3,4	4,3	5.1	40	6,8	8,1
		0.25 D	24	0,3	0,5	0,6	0,8	0,9	1,2	1,5	1,8	2.2	2.4	3.0	3,6	4,8	6,0	7,2	8.4	9,6	11
SAÍDA	0 90°	canto vivo	50	0.7	1,0	1,2	1.6	1,9	2.5	3.2	3.8	4,5	5,0	6.2	7,5	100	12,5	15,0	15,0	20.0	24
EQUIPA- MENTO		reenfrante	50	0.7	1,0	1,2	1.6	1,9	2.5	3,2	3.8	4.5	5,0	6.2	7.5	10.0	125	15,0	15,0	20.0	24
NIRADA DE	9	canto vivo	25	0.3	0,5	0,7	0.8	1,0	1,3	23	2.0	2.3	2.6	3.3	3,9	5,2	4,5	7,8	9,1	10,4	12
EQUIPA- MENTO	0 90°	reentrante	40	0.5	0,8	1.0	1.3	1.5	20	25	3.0	36	4.0	5,0	6,0	8.0	10.0	120	14,0	16,0	19

$$z_{inicial} = 6.6m;$$

$$p_{\text{inicial abs}} = 1.8 \times 9.8 \times 10^4 + 101325 = 277725 \frac{N}{m^2}$$

$$p_{\text{vapor}} = 2,83 \times 9,8 \times 10^4 = 277340 \frac{N}{m^2}$$

$$\gamma = 808.1 \times 9.8 = 7919.38 \frac{\text{N}}{\text{m}^2}$$

uma saída de equipamento com canto vivo \rightarrow Leq = 20m;

duas válvulas gavetas \rightarrow Leq = $2 \times 3,2 = 6,4m$;

um filtro de linha \rightarrow Leq = 128m;

dois cotovelos de 90^0 de raio longo \rightarrow Leq = $2 \times 8 = 16$ m;

um tê de saída de lado \rightarrow Leq = 24m;

quatro uniões \rightarrow Leq = $4 \times 0.7 = 2.8$ m;

comprimento de tubulação igual a 22,1 m.

Resolvendo com os resultados do Excel:

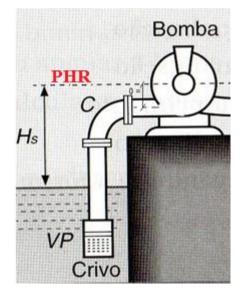
$$NPSH_{disp} = 6.6 + \frac{277725 - 277340}{7919,38} - 0.0153 \times \frac{(22.1 + 197.2)}{0.3636} \times \frac{\left(655.9 / 3600\right)^2}{19.6 \times \left(1038.1 \times 10^{-4}\right)^2}$$

$$NPSH_{disp} \approx 5.198...m \approx 5.1m \rightarrow (0.5)$$

$$NPSH_{disp} \cong NPSH_{req} \Rightarrow n\tilde{a}o \text{ está cavitando } \rightarrow (0,5)$$

Resolvendo sem os resultados do Excel:

$$NPSH_{disp} = 6.6 + \frac{277725 - 277340}{7919,38} - 0.0153 \times \frac{(22.1 + 197.2)}{0.3636} \times \frac{(660/3600)^2}{19.6 \times (1038.1 \times 10^{-4})^2}$$

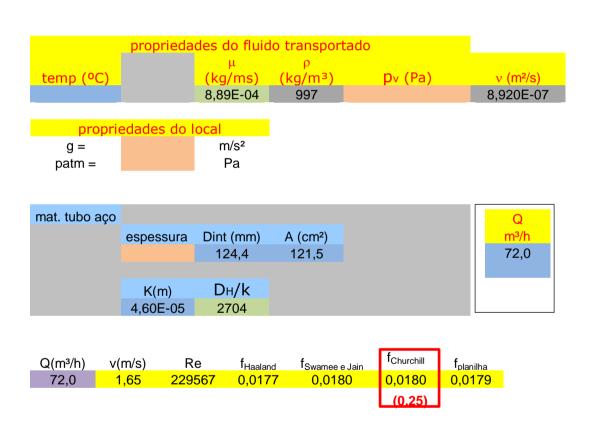

$$NPSH_{disp} \approx 5.180..m \approx 5.1m \rightarrow (0.5)$$

$$\text{NPSH}_{\text{disp}} > \text{NPSH}_{\text{req}} \implies \text{n\~{a}o} \text{ est\'{a} cavitando} \rightarrow (0,5)$$

3ª Questão:

- a. a altura máxima que a bomba pode ser instalada em relação ao nível de captação (H_s) para que não ocorra o fenômeno de cavitação.
 - vazão de trabalho de 72 m³/h;
 - para esta vazão de trabalho o NPSH_{requerido} é 4 m
 - um único diâmetro de aço XXS (K = 0,000046m) com diâmetro nominal de 6"

Designação de espessura.	Espessura de parede (mm)	Diâmetro interno (mm)	Área da seção livre (cm²)	Área da seção de metal (cm²)	Superficie externa (m²/m)	_		Moment o de inércia (cm ⁴)	Momento resistente (cm³)	Raio de giração (cm)
***		****		***	****					
10S	3,40	161,4	204,5	17,6	0,535	13,82	20,45	599,37	71,30	5,83
Std, 40, 40S	7,11	154,0	186,4	36,0		28,23	18,64	1171,3	139,32	5,70
XS, 80, 80S	10,97	146,3	168,2	54,2		42,51	16,82	1685,7	200,45	5,58
120	14,3	139,7	153,4	69.0		54,15	15,34	2064,5	245,52	5,47
160	18,2	131.8	136.4	86,0		67,41	13,64	2455,8	291,91	5,34
XXS	21,9	124.4	121.5	100,9		79,10	12,15	2759,6	328,29	5,23
	de espessura. (v. Nota 2) 10S Std, 40, 40S XS, 80, 80S 120	de espessura. (v. Nota 3) (v. Nota 2) (v. Nota 3) 10S 3,40 Std, 40, 40S 7,11 XS, 80, 80S 10,97 120 14,3 160 18,2	de espessura. (mm) (mm) (mm) (mm) (v. Nota 2) (v. Nota 3) (v. Nota 3) (v. Nota 3) (v. Nota 3) (v. Nota 40, 40, 40, 40, 7, 11 154, 0) (v. Nota 3) (v. N	de espessura. (mm) (mm) seção livre (cm²) (v. Nota 2) (v. Nota 3) 10S 3,40 161,4 204,5 161,4 154,0 186,4 163, 168,2 120 14,3 139,7 153,4 160 18,2 131,8 136,4	de espessura. de parede (mm) (mm) seção livre (cm²) de metal (cm²) (v. Nota 2) (v. Nota 3) (v. Nota 2) (v. Nota 3) (v. Nota 40, 40, 40, 40, 40, 40, 40, 40, 40, 40,	de espessura. de parede (mm) (mm) seção seção de externa (m²/m) (cm²) (c	de espessura. de parede (mm) interno (mm) seção livre (cm²) externa (m²/m) (k. Tubo vazio (Nota 5) (v. Nota 2) (v. Nota 3) 161,4 204,5 17,6 0,535 13,82 Std, 40, 40S 7,11 154,0 186,4 36,0 28,23 XS, 80, 80S 10,97 146,3 168,2 54,2 42,51 120 14,3 139,7 153,4 69,0 54,15 160 18,2 131,8 136,4 86,0 67,41	de espessura. de parede (mm) interno (mm) seção livre (cm²) seção de metal (cm²/m) externa (m²/m) (kg/m) Conteúdo de água (Nota 5) (v. Nota 2) (v. Nota 3) 10S 3,40 161,4 204,5 17,6 0,535 13,82 20,45 Std, 40, 40S 7,11 154,0 186,4 36,0 28,23 18,64 XS, 80, 80S 10,97 146,3 168,2 54,2 42,51 16,82 120 14,3 139,7 153,4 69,0 54,15 15,34 160 18,2 131,8 136,4 86,0 67,41 13,64	de espessura. de parede (mm) interno (mm) seção livre (cm²) externa (m²/m) (kg/m) o de inércia (cm²) (v. Nota 2) (v. Nota 3) 10S 3,40 161,4 204,5 17,6 0,535 13,82 20,45 599,37 Std, 40, 40S 7,11 154,0 186,4 36,0 28,23 18,64 1171,3 XS, 80, 80S 10,97 146,3 168,2 54,2 42,51 16,82 1685,7 120 14,3 139,7 153,4 69,0 54,15 15,34 2064,5 160 18,2 131,8 1364 86,0 67,41 13,64 2455,8	de espessura. de parede (mm) interno (mm) seção livre (cm²) externa (m²/m) (kg/m) o de inércia (cm³) resistente (cm³) (v. Nota 2) (v. Nota 3) 10S 3,40 161,4 204,5 17,6 0,535 13,82 20,45 599,37 71,30 Std, 40, 40S 7,11 154,0 186,4 36,0 28,23 18,64 1171,3 139,32 XS, 80, 80S 10,97 146,3 168,2 54,2 42,51 16,82 1685,7 200,45 120 14,3 139,7 153,4 69,0 54,15 15,34 2064,5 245,52 291,91 160 18,2 131,8 136,4 86,0 67,41 13,64 2455,8 291,91



Dados: pressão atmosférica igual a 101234 Pa; propriedades do fluido bombeado: massa específica igual a 997 kg/m³, viscosidade cinemática igual a $0.892 \times 10^{-6} \, \frac{\text{m}^2}{\text{s}}$ e pressão de vapor igual a 3166 Pa (abs); comprimento da tubulação antes da bomba 5,4 m que tem as seguintes singularidades: válvula de válvula de pé com crivo da Tupy e cotovelo fêmea de 90^{0} da Tupy.

Equivalência da Perda de Carga das Conexões TUPY BSP em Metros de Tubos de Aço Galvanizados

DIÂMETRO Nominal	1/4	3/8	1/2	3/4	1	11/4	11/2	2	21/2	3	4	5	6
	0,23	0,35	0,47	0,70	0,94	1,17	1,41	1,88	2,35	2,82	3,76	4,70	5,64

Comprimentos Equivalentes em metros para Bocais e Válvulas												
Nominal	Saída da Entrada Tubulação Normal		Entrada de borda	Válvulas de Gaveta	Válvulas de Globo Aberto	Válvulas de Ângulo Aberto	Válvula de Pé e Crivo Aberto	Válvula de Horizontal	e Retenção Vertical			
Diàmetro Nominal			=		Ā							
1/2	0,4	0,2	0,4	0,1	4,9	2,6	3,6	1,1	1,6			
3/4	0,5	0,2	0,5	0,1	6,7	3,6	5,6	1,6	2,4			
1	0,7	0,3	0,7	0,2	8,2	4,6	7,3	2,1	3,2			
11/4	0,9	0,4	0,9	0,2	11,3	5,6	10,0	2,7	4,0			
11/2	1,0	0,5	1,0	0,3	13,4	6,7	11,6	3,2	4,8			
2	1,5	0,7	1,5	0,4	17,4	8,5	14,0	4,2	6,4			
21/2	1,9	0,9	1,9	0,4	21,0	10,0	17,0	5,2	8,1			
3	2,2	1,1	2,2	0,5	26,0	13,0	20,0	6,3	9,7			
4	3,2	1,6	3,2	0,7	34,0	17,0	23,0	8,4	12,9			
5	4,0	2,0	4,0	0,9	43,0	21,0	30,0	10,4	16,1			
6	5,0	2,5	5,0	1,1	51,0	26,0	39,0	12,5	19,3			

$$\begin{split} H_{paB} &= f \times \frac{\left(L + \sum Leq\right)}{D_H} \times \frac{Q^2}{2g \times A^2} = 0,0180 \times \frac{\left(5,4 + 44,64\right)}{0,1244} \times \frac{\left(72/3600\right)^2}{19,6 \times \left(121,5 \times 10^{-4}\right)^2} \\ H_{paB} &\cong 1,001 \text{m} \rightarrow \left(0,25\right) \end{split}$$

 $z_{max} = H_S \Rightarrow NPSH_{disp} = NPSH_{req} \Rightarrow PHR$ no eixo da bomba

$$- H_{S} + \frac{(101234 - 3166)}{997 \times 9.8} - 1,001 = 4 :: -H_{S} = -5,03m \Rightarrow H_{S} = 5,03m \Rightarrow (0,5)$$

Para a bomba não cavitar ela deve ser instalada no máximo a 5,03 m acima do nível de captação. (0,5)

b. a pressão estática na seção de saída da bomba nas condições estabelecidas no item <u>a</u>.

Dados: comprimento da tubulação depois da bomba 30 m que tem as seguintes singularidades:

válvula de retenção tipo portinhola – Leg = 20,2 m

válvula globo - Leq = 52,5 m

dois cotovelos fêmea de 90° da Tupy - Leq_T = 2 x 5,64 = 11,28 m

entrada de reservatório (equipamento) de canto vivo — Leq = 3,9 m $\sum{\rm Leq}=87,\!88{\rm m} \to \left(0,\!25\right)$

a carga estática da instalação quando a bomba for instalada na altura máxima para não ocorrer a cavitação é 15 m, portanto: $H_r=15-5{,}03=9{,}97m$

$$\begin{split} &H_{s} = H_{f} + H_{pdB} \rightarrow PHR \, em \, (s) \\ &\frac{p_{s}}{997 \times 9.8} + \frac{1,65^{2}}{19,6} = 9,97 + H_{pdB} \\ &H_{pdB} = 0,0180 \times \frac{\left(30 + 87,88\right)}{0,1244} \times \frac{1,65^{2}}{19,6} \cong 2,37m \rightarrow \left(0,25\right) \\ &p_{s} \cong 119212Pa \rightarrow \left(0,5\right) \end{split}$$