

Em indústrias de processamento, indústrias químicas, refinarias de petróleo, e petroquímicas, boa parte das indústrias alimentícias e farmacêuticas, o custo das tubulações pode representar 70% do custo dos equipamentos ou 25% do custo total da instalação. [Silva Telles -Tubulações Industriais -1979]

"Segundo Brown (2.001), estimase que de toda energia elétrica utilizada pela indústria, 65% seja destinada a motores elétricos e que, do montante relativo a esse percentual, 20% seja desperdiçado por mecanismos de controle (ex.: válvula)".[Wladimir Rodrigues em seu artigo relacionado ao uso dos inversores de frequência]

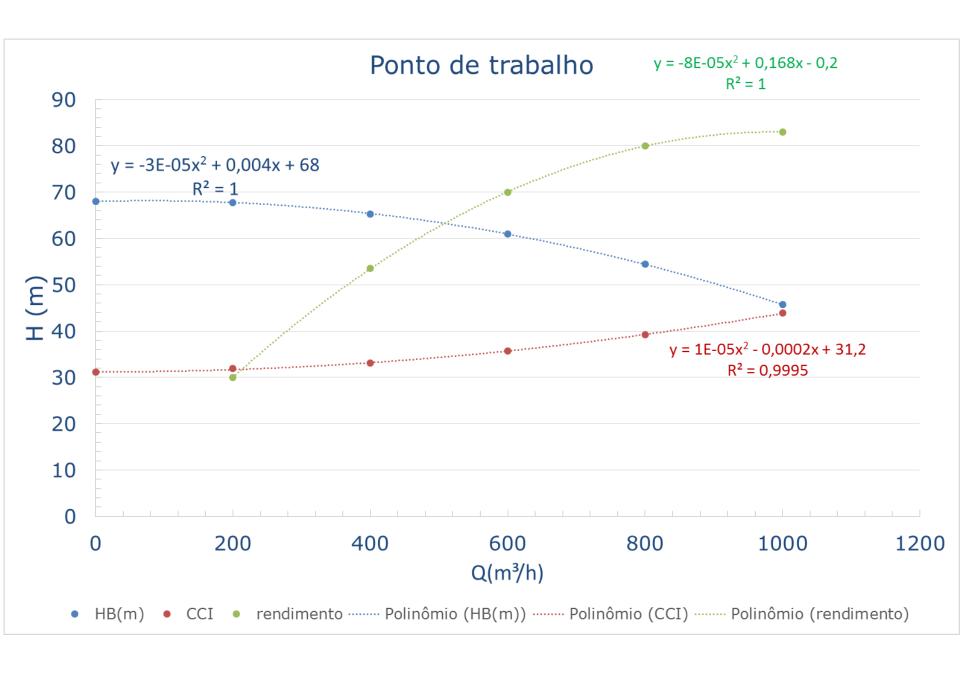
Como optamos em formarmos engenheiros e diante das constatações anteriores é fundamental que além da conscientização, adquiramos conhecimentos, tanto para o cálculo dos custos de tubulações como para um uso consciente da energia, no caso a elétrica, pois a mesma ainda está alicerçada nas usinas hidroelétricas e com a escassez da água se torna vital que possam ser criados mecanismos para a otimização do seu uso.

Por outro lado, vimos que a utilização dos inversores de frequência propicia:

- economia de energia;
- redução de desgaste mecânico e de manutenção;
- redução do fator de demanda de energia pelo fato do motor partir suavemente, sem problemas elevados de correntes e conjugados de partida;
- melhora o fator de potência;
- possibilita a redução de transientes hidráulicos;
- reduz as dimensões, tanto dos reservatórios de captação como de distribuição.

Para a preservação das vantagens anterior é fundamental que possamos estabelecer a faixa ideal de variação da rotação no funcionamento da bomba e este será um dos objetivos deste nosso encontro.

Vamos considerar uma instalação de bombeamento que opera com uma bomba de 1750 rpm em uma frequência de 60 Hz e que tem as seguintes características:


1750 rpm					
Q(m³/h)	$H_B(m)$	η _B (%)			
0	68				
200	67,8	30			
400	65,3	53,5			
600	61	70			
800	54,4	80			
1000	45,7	83			

Sabendo que a instalação de bombeamento projetada através da sua equação da CCI propiciou os valores da tabela 2, e que para funcionamento mais eficiente instalação, já que temos a necessidade de variação da vazão, foi instalado um inversor de frequência, pede-se estabelecer a faixa de frequência que o mesmo deve funcionar para que possamos, tanto garantir um bom rendimento operacional como o respeito das vazões mínimas de funcionamento da bomba no intuito de evitar o fenômeno de recirculação que certamente viria a danificá-la.

CCI					
$Q(m^3/h)$	$H_{S}(m)$				
0	31,2				
200	31,9				
400	33,1				
600	35,7				
800	39,2				
1000	43,9				

TABELA 2

Vamos aprender fazendo!

A vazão mínima para este caso, para que não tenhamos o fenômeno de recirculação, será de 50% do valor da vazão de máximo rendimento.

$$\eta_{B_{\text{máx}}} = 83\% \Rightarrow Q_{\eta_{B_{\text{máx}}}} = 1000 \frac{\text{m}^3}{\text{h}}$$

$$Q_{\min} = 0.5 \times 1000 = 500 \frac{m^3}{h}$$

A frequência associada a rotação máxima dada pelo fabricante é a de 60 Hz e como trata-se de um motor de 4 polos, podemos constatar um escorregamento no acoplamento do motor com a bomba na ordem de 2,78%, como demonstro a seguir:

$$n_{\text{sincrona}} = \frac{120 \times 60}{4} = 1800 \text{rpm}$$

escoregamento =
$$\left(1 - \frac{1750}{1800}\right) \times 100 \cong 2,78\%$$

A determinação da frequência mínima teórica para preservar o bom funcionamento do conjunto será obtida através do coeficiente manométrico do ponto de shut-off calculado para a rotação de 1750 rpm e para o mesmo igual a carga estática e que definirá a rotação mínima, portanto:

$$\Psi = \frac{gH_B}{n^2 \times D_R^2} \rightarrow \text{para } Q = 0$$

Calculando a rotação e a frequência mínima teórica:

$$\frac{68}{1750^2} = \frac{31.2}{n_{\text{min}_{\text{teórica}}}^2} \therefore n_{\text{min}_{\text{teórica}}} = 1750 \times \left(\frac{31.2}{68}\right)^{\frac{1}{2}}$$

$$n_{\min_{\text{teórica}}} \cong 1185,4\text{rpm}$$

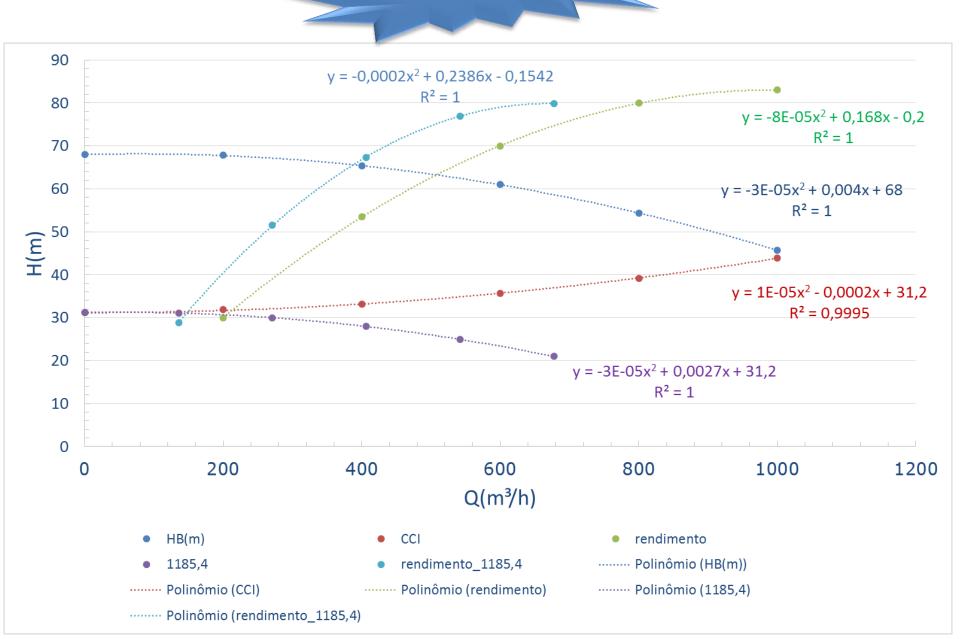
$$n_{\min_{\text{teórica}_{\text{sincrona}}} \cong 1219,3\text{rpm}$$

$$1219,3 = \frac{120 \times f_{\text{m\'inima}_{\text{te\'orica}}}}{4} \therefore f_{\text{m\'inima}_{\text{te\'orica}}} \cong 40,6 \approx 41 \text{Hz}$$


$$Q_{n_{\text{min}}}_{\text{teórica}} = Q_{1750} \times \left(\frac{n_{\text{min}}_{\text{teórica}}}{1750}\right)$$

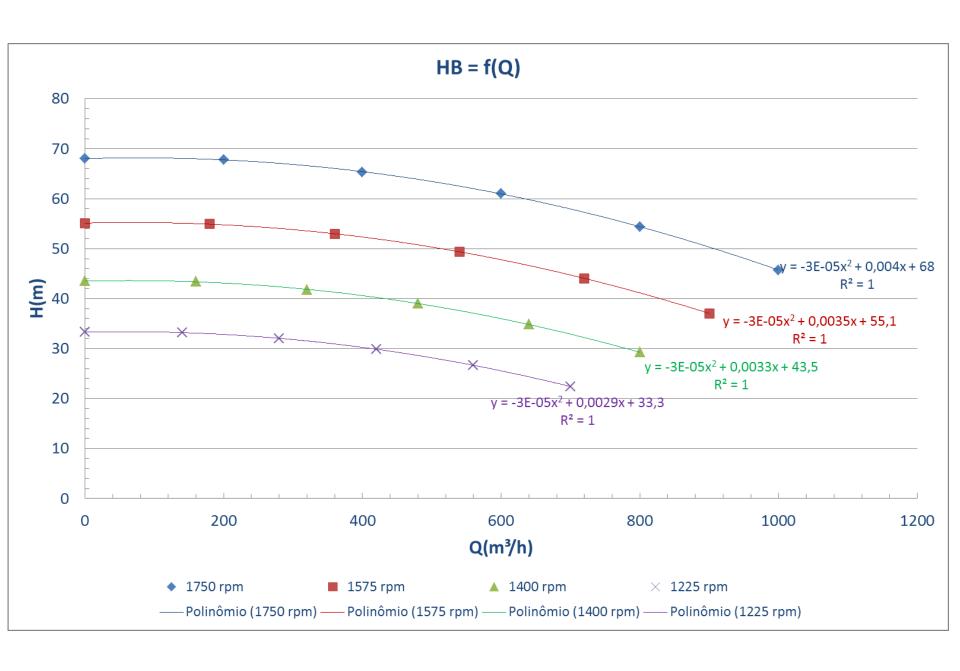
$$H_{B_{n_{min_{te\acute{o}rica}}}} = H_{B_{1750}} \times \left(\frac{n_{min_{te\acute{o}rica}}}{1750}\right)^{2}$$

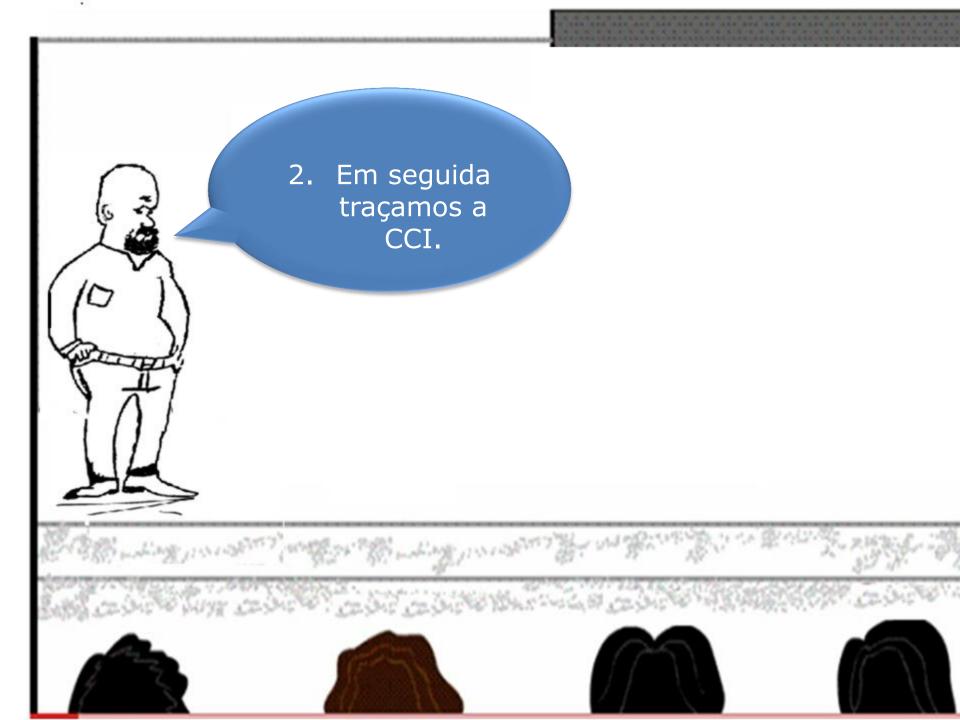
$$\eta_{\text{B}_{\text{n}}}$$
 = 1 - $\left(1 - \eta_{\text{B}_{1750}}\right) \times \left(\frac{1750}{n_{\text{min}}}\right)^{0.1}$

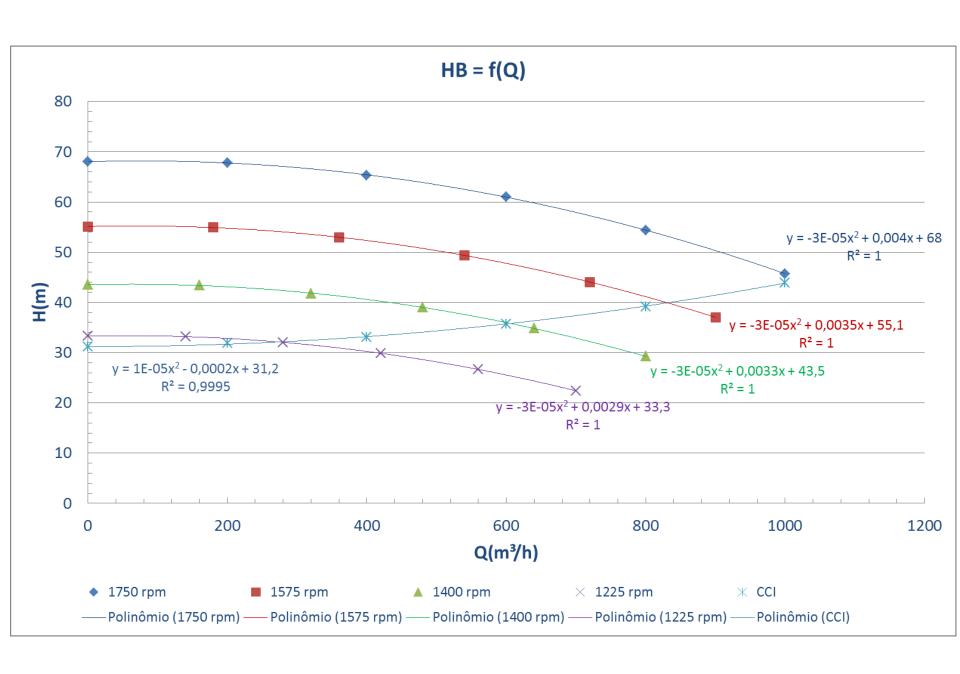

representação gráfica desta situação teórica será obtida através das expressões a seguir:

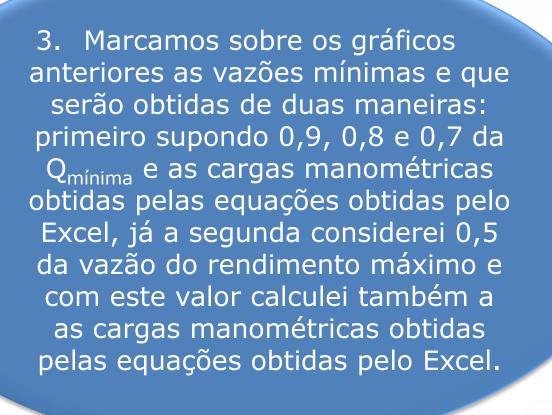
1185,4 rpm					
Q(m³/h)	H _B (m)	η _Β (%)			
0	31,2				
135,5	31,1	31,2			
270,9	30,0	55,6			
406,4	28,0	72,7			
541,9	25,0	83,1			
677,4	21,0	86,3			

Verdade, porém devemos fazer a análise real e esta fica geralmente entre 70% e 100% da rotação estabelecida pelo fabricante.

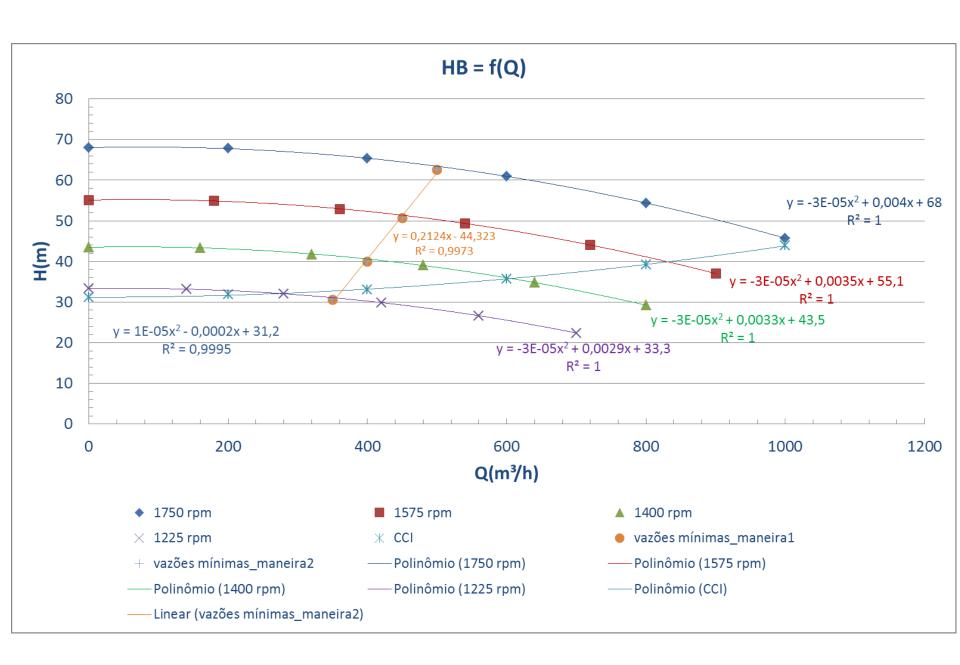

Tivemos na obtenção da rotação mínima teórica uma redução aproximadamente igual a 67,7%.

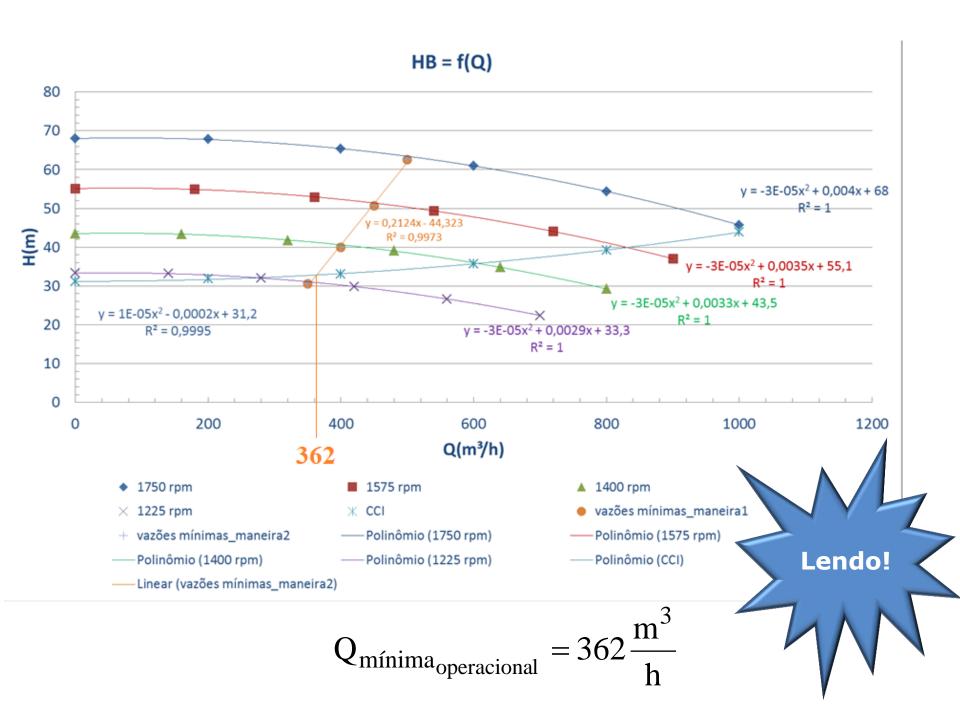

E como obter a rotação mínima real?




	1575			1400			1225		
Q(m³/h)	H _B (m)	η _B (%)	Q(m³/h)	H _B (m)	η _B (%)	Q(m³/h)	H _B (m)	η _B (%)	H _S (m)
0	55,1		0	43,5		0	33,3		31,2
180	54,9	30,3	160	43,4	30,7	140	33,2	31,1	31,9
360	52,9	54,1	320	41,8	54,7	280	32,0	55,4	33,1
540	49,4	70,7	480	39,0	71,6	420	29,9	72,5	35,7
720	44,1	80,8	640	34,8	81,8	560	26,7	82,9	39,2
900	37,0	83,9	800	29,2	84,9	700	22,4	86,0	43,9

Que resultaram na representação gráfica do próximo slide:




As duas maneiras deram a mesma coisa!

4. No cruzamento da reta que une as vazões mínimas e a CCI, determinamos a vazão mínima operacional.

Primeira maneira		Segunda maneira	
500	62,5	500	62,5
450	50,6	450	50,6
400	40,0	400	40,0
350	30,6	350	30,6

$$10^{-5} \times Q^{2} - 0,0002 \times Q + 31,2 = 0,2124 \times Q - 44,323$$

$$10^{-5} \times Q^{2} - 0,2126 \times Q + 75,523 = 0$$

$$Q_{minop} = \frac{0,2126 \pm \sqrt{0,2126^{2} - 4 \times 10^{-5} \times 75,523}}{2 \times 10^{-5}}$$

$$Q_{minop_{1}} = \frac{0,2126 + 0,205372442}{2 \times 10^{-5}} \cong 20898,6 \frac{m^{3}}{h} \rightarrow \text{incoerente}$$

$$Q_{minop_{2}} = \frac{0,2126 - 0,205372442}{2 \times 10^{-5}} \cong 361,4 \frac{m^{3}}{h} \rightarrow \text{coerente}$$

5. Pelo coeficiente de vazão, obtemos a rotação mínima operacional

$$\phi_{1750} = \phi_{n}_{minima}_{operacional}$$

$$\frac{500}{1750} = \frac{361,4}{n_{\text{mínima}}_{\text{operacional}}} :: n_{\text{mínima}}_{\text{operacional}} = 1264,9 \text{rpm}$$

Que corresponde a 72,3% da rotação máxima

6. Podemos finalmente determinar a frequência mínima operacional

$$n_{\text{min}operacional}_{\text{sincrona}} \cong \frac{1264,9}{1 - \frac{2,78}{100}} = 1301,1 \text{rpm}$$

$$1301,1 = \frac{120 \times f_{\text{m\'inima}operacional}}{4} :: f_{\text{m\'inima}operacional} \cong 43,4 \text{Hz}$$