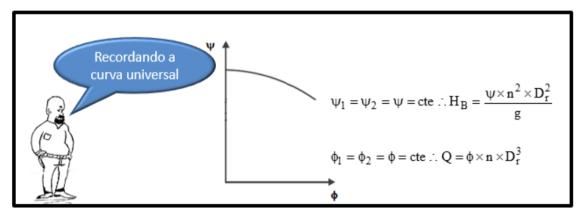
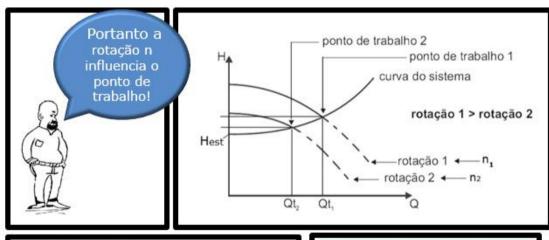
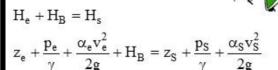


Segunda aula de laboratório de ME5330 – 10/02/2015

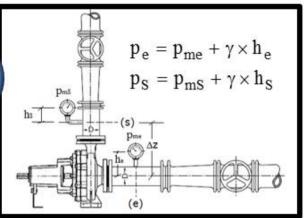




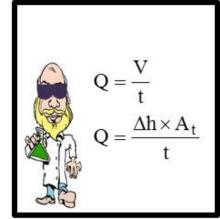
Para responder a esta pergunta evoco o coeficiente manométrico (ψ) e o coeficiente de vazão (φ)


$$\psi = \frac{g \times H_B}{n^2 \times D_r^2}; \varphi = \frac{Q}{n \times D_r^3}$$

Na experiência de bomba, para cada posição da válvula globo, temos:



7



Ensaio	Pme ()	he (mm)	Pms ()	hs (mm)	Δh (mm)	t (s)	n (rpm)
1							
2							
3							
4							
5							
6							
7							
8							

$$\phi_{n_{\mbox{lida}}} = \phi_{n} \rightarrow \frac{Q_{n_{\mbox{lida}}}}{n_{\mbox{lida}}} = \frac{Q_{n}}{n}$$

$$Q_n = \left(\frac{n}{n_{lida}}\right) \times Q_{n_{lida}}$$

$$\phi_{n}_{lida} = \phi_n \rightarrow \frac{H_{B_{n}_{lida}}}{n_{lida}^2} = \frac{H_{B_{n}}}{n^2}$$

Recorrendo aos coeficientes de vazão (Φ) e o coeficiente manométrico (Ψ) e impondo as condições de semelhança entre a rotação n e a rotação lida ao longo da experiência

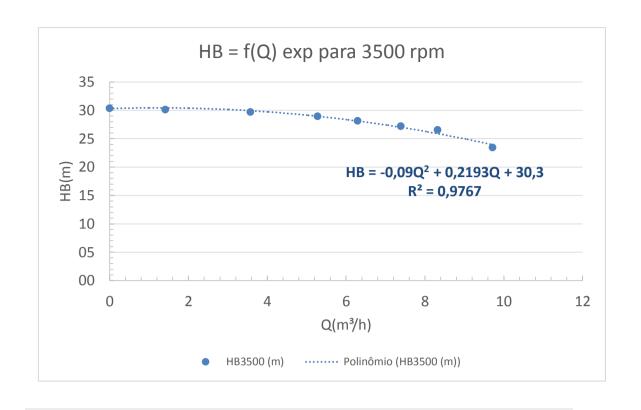
$$H_{B_n} = \left(\frac{n}{n_{lida}}\right)^2 \times H_{B_{nlida}}$$

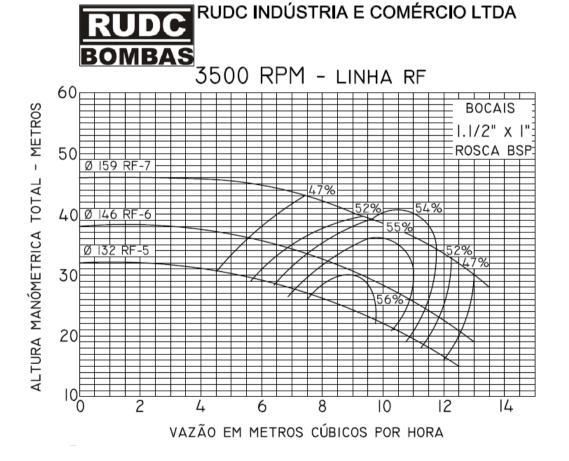
		de result		1	
	Experi	mental	Fabri	cante	
Ensaio	Q ₃₅₀₀ (m³/h)	H _{B3500} (m)	Q ₃₅₀₀ (m³/h)	H _{B3500} (m)	
1					
2					
3					
4					
5					
6					
7					
8					
					12

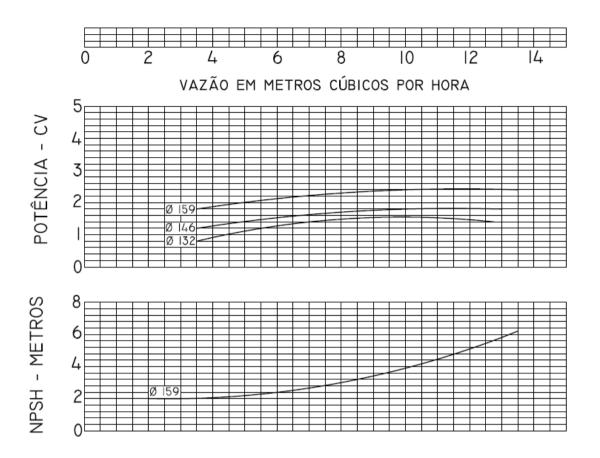
Dados coletados para a bancada 1 do laboratório:

seção		DN (pol)	Dint (mm)	A (cm²)	
	entrada	1,5	40,8	13,1	
	saída	1	26,6	5,57	

temp
$$(^{\circ}F)$$
 $g(m/s^2)$ $h_{e (cm)}$ $h_{S (cm)}$ $\frac{\Delta e_{z-S}}{(cm)}$ 74 9,8 11,5 9,2 21


ensaio	Pentrada (mmHg)	Psaída (kPa)	Δ h (mm)	t(s)	n (rpm)
1	-60	289	0		3515
2	-95	277	50	69	3492
3	-105	265	50	27,57	3462
4	-115	253	100	37,5	3446
5	-125	242	100	31,5	3441
6	-140	229	100	26,87	3438
7	-155	217	100	23,91	3429
8	-195	192	100	20,47	3430

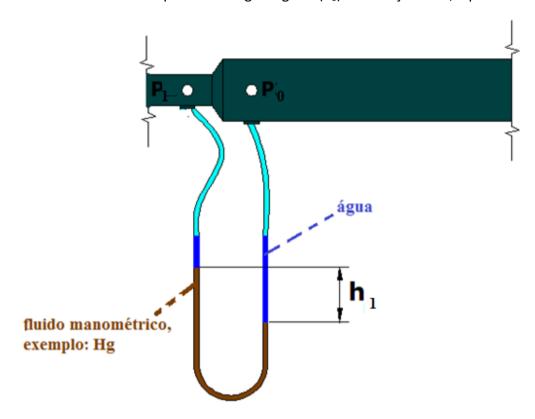

Cálculos:

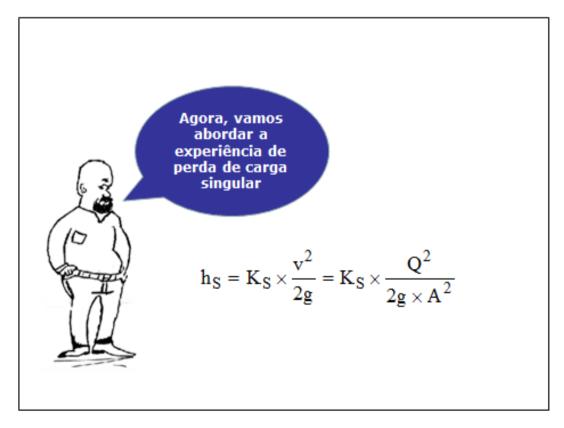

ensaio	Q(m³/s)	Q(m³/h)	p _e (Pa)	p _s (Pa)	ve (m/s)	vs(m/s)	HB(m)
1	0	0	-6872,8	289899,2	0	0	30,6
2	0,000393	1,4	-11537,6	277899,2	0,300	0,705	30,0
3	0,000982	3,5	-12870,4	265899,2	0,750	1,8	29,0
4	0,00144	5,2	-14203,2	253899,2	1,1	2,6	28,0
5	0,00172	6,2	-15536,0	242899,2	1,3	3,1	27,2
6	0,00202	7,3	-17535,2	229899,2	1,5	3,6	26,2
7	0,00227	8,2	-19534,4	217899,2	1,7	4,1	25,4
8	0,00265	9,5	-24865,6	192899,2	2,0	4,8	22,5

$Q_{3500}(m^3/h)$	HB_{3500}
Q ₃₅₀₀ (111 /11)	(m)
0	30,3
1,4	30,1
3,6	29,7
5,3	28,9
6,3	28,1
7,4	27,2
8,3	26,5
9,7	23,4

Com esta última tabela e o
Excel, podemos traçar a
curva da carga
manométrica em função
da vazão com a bomba
operando a 3500 rpm.

Importante observar que a curva da potência foi elaborada considerando a água com massa específica igual a 1000 kg/m³.




RUDC RUDCING STORE 60 ALTURA MANÓMETRICA TOTAL - METROS ROSCA BSP 50 40 30 20 VAZÃO EM METROS CÚBICOS POR HORA POTÊNCIA - CV NPSH - METROS

RUDC INDÚSTRIA E COMÉRCIO LTDA

Determinar o coeficiente de perda de carga singular (K_S) da redução de 1,5" para 1".

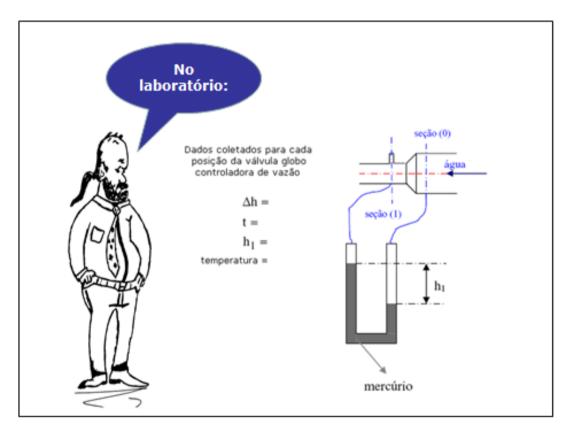
Para projeto:

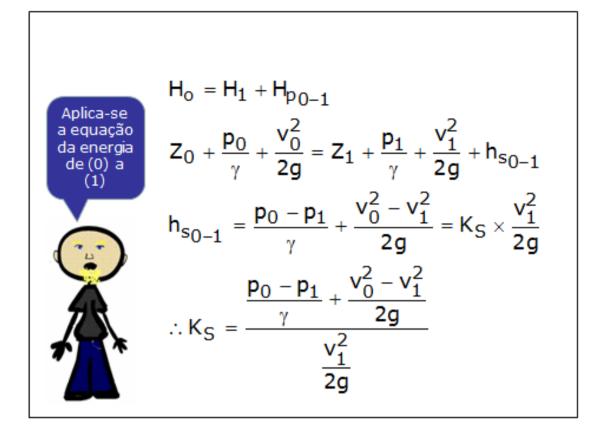
$$h_S = K_S \times \frac{v^2}{2g} = K_S \times \frac{Q^2}{2g \times A^2}$$

 $K_S \rightarrow \text{coeficiente}$ de perda singular ou localizada

v → velocidade média do escoamento

g → aceleração da gravidade


Q → vazão do escoamento


A → área da seção formada pelo fluido

Existe outra maneira:

$$h_S = f \times \frac{Leq}{D_H} \times \frac{v^2}{2g}$$

 $\mathsf{L}_{eq} \to \mathsf{compriment} \ \mathsf{o} \ \mathsf{equivalente} \ \to \mathsf{L}_{eq} = \frac{\mathsf{K}_{S} \times \mathsf{D}_{H}}{\mathsf{f}}$

Vamos aplicar os dados coletados pela equipe:

$$h_1 = 65 \text{mm}$$

 $t = 23^0 \text{ C}$
 $\Delta h = 100 \text{mm}$
 $A_{tan que} = 0.738^2 \text{ m}^2$

Cálculos:

$$\begin{split} Q &= \frac{\Delta h \times A_t}{t} = \frac{0.1 \times 0.738^2}{21.15} = 2.65 \times 10^{-3} \, \frac{m^3}{s} \\ v_0 &= \frac{2.65 \times 10^{-3}}{13.1 \times 10^{-4}} \cong 2.02 \, \frac{m}{s} \rightarrow v_1 = \frac{2.65 \times 10^{-3}}{5.57 \times 10^{-4}} \cong 4.76 \, \frac{m}{s} \\ H_0 &= H_1 + h_{Sred} \\ z_0 &+ \frac{p_0}{\gamma} + \frac{1 \times v_0^2}{2g} = z_1 + \frac{p_1}{\gamma} + \frac{1 \times v_1^2}{2g} + h_{Sred} \\ h_{Sred} &= \frac{p_0 - p_1}{\gamma} + \frac{v_0^2 - v_1^2}{2g} = \frac{0.065 \times 9.8 \times (13538 - 997.5)}{997.5 \times 9.8} + \frac{2.02^2 - 4.76^2}{19.6} \\ h_{Sred} &\cong -0.131 \text{m} \rightarrow \text{comprova que existem dados errados, portanto devem} \\ \text{ser novamente coletados} \end{split}$$

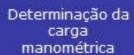
Bancada 3

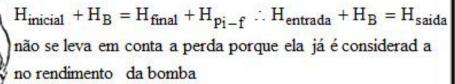
Calcular a carga manométrica da bomba e a perda de carga total antes da bomba para os seguintes dados coletados:

$$\begin{split} p_{m_e} &= -220 \text{mmHg} \rightarrow h_e = 11,5 \text{cm} \rightarrow \text{DN} = 1,5" \rightarrow \text{aço } 40 \\ &\qquad \qquad \rightarrow D_{int} = 40,8 \text{mm; A} = 13,1 \text{cm}^2 \\ p_{m_S} &= 190 \text{kPa} \rightarrow h_s = 9 \text{cm} \rightarrow \text{DN} = 1" \rightarrow \text{aço } 40 \\ &\qquad \qquad \rightarrow D_{int} = 26,6 \text{mm; A} = 5,57 \text{cm}^2 \end{split}$$

 $\Delta z_{e-s} = 21,5$ cm

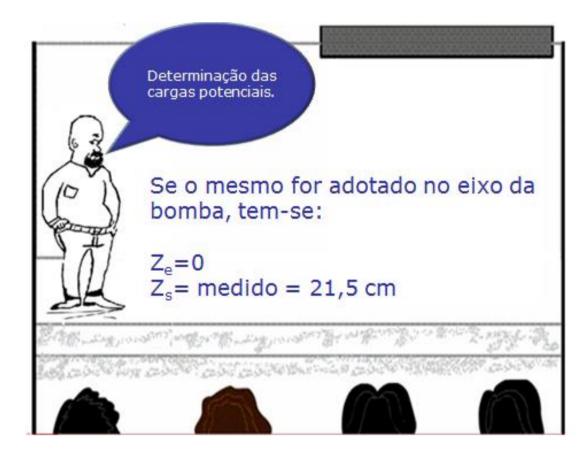
em relação ao nível de captação \rightarrow z_e = 119cm


temperatura = 23° C


 $A_{tan que} = 5610 \text{cm}^2;$

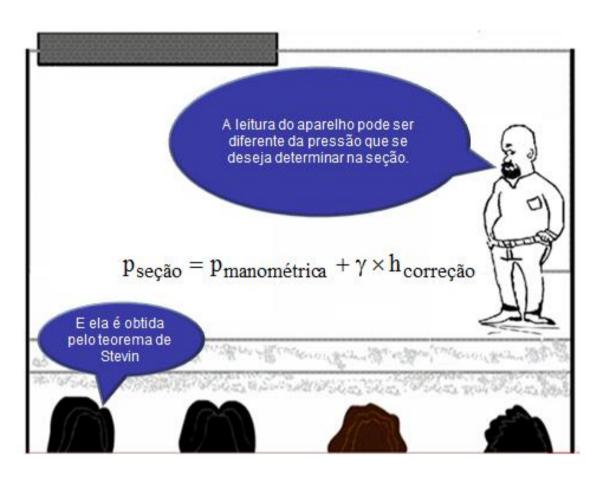
 $\Delta h = 100 \text{mm} \Rightarrow t = 21.4 \text{s}$

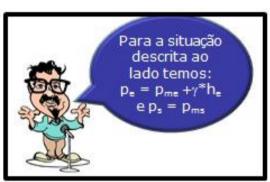
$$Q = \frac{0.1 \times 5610 \times 10^{-4}}{21.4} \cong 2.62 \times 10^{-3} \frac{\text{m}^3}{\text{s}}$$

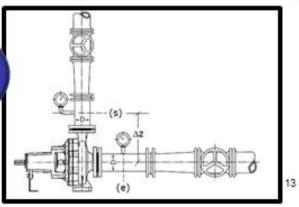


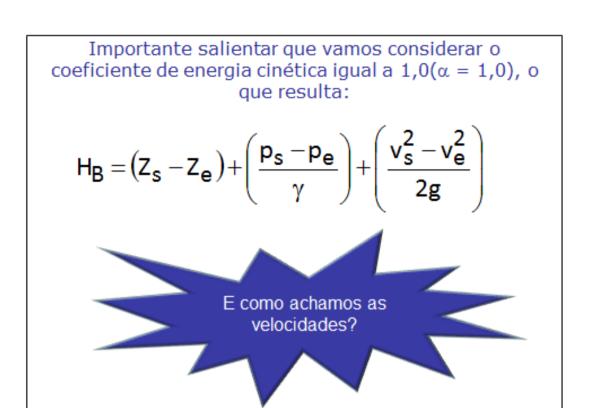
$$Z_e + \frac{p_e}{\gamma} + \frac{v_e^2}{2g} + H_B = Z_s + \frac{p_s}{\gamma} + \frac{v_s^2}{2g}$$

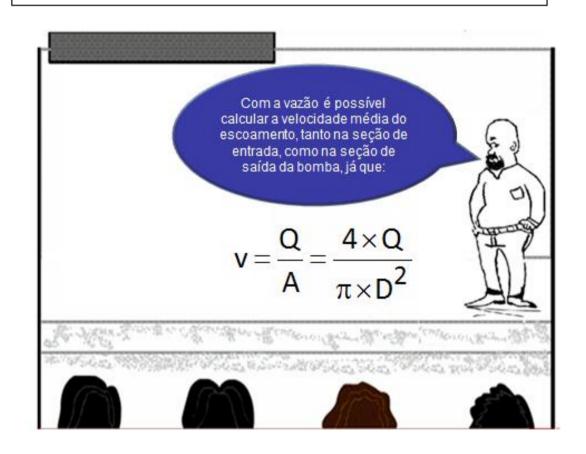
いいからの のないないでありののとうというというというというと

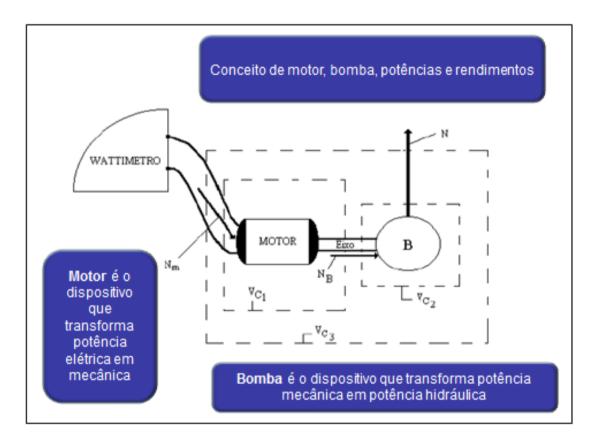

The state of the s


PHR na entrada da bomba





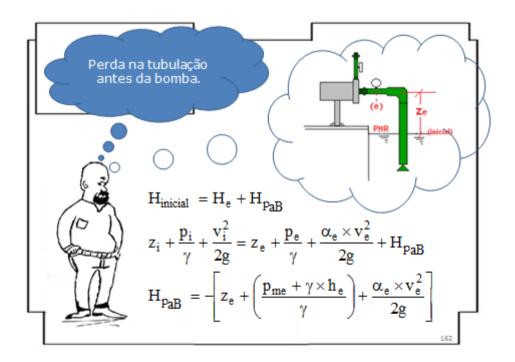




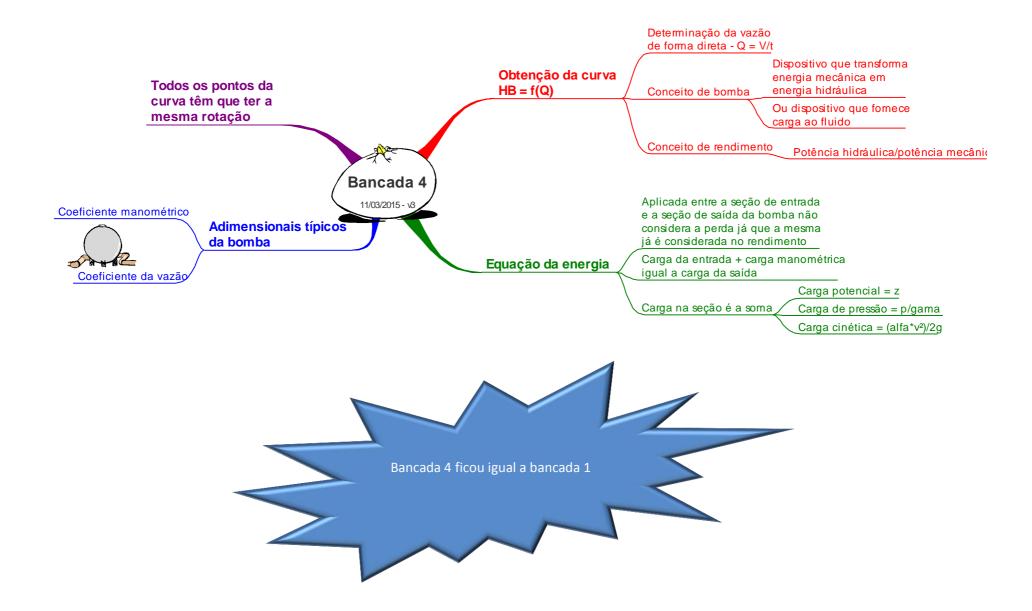
$$\begin{split} v_s &= \frac{Q}{A_S} = \frac{2,62 \times 10^{-3}}{5,57 \times 10^{-4}} \cong 4,7 \frac{m}{s} \rightarrow v_e = \frac{Q}{A_e} = \frac{2,62 \times 10^{-3}}{13,1 \times 10^{-4}} \cong 2,0 \frac{m}{s} \\ H_B &= 0,215 + \frac{\left(190000 + 0,09 \times 997,5 \times 9,8\right) - \left(-0,22 \times 13600 \times 9,8 + 0,115 \times 997,5 \times 9,8\right)}{997,5 \times 9,8} \\ &+ \frac{4,7^2 - 2^2}{19.6} \end{split}$$

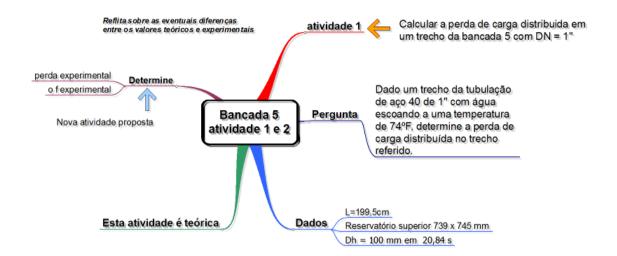
 \therefore H_B \cong 23,6m

Vamos refletir sobre potências e rendimentos:


Se a potência mecânica (NB) for conhecida e a potência hidráulica (N) também, podemos determinar a potência dissipada (perdida) na bomba, pois:

$$N_{dissipada} = N_B - N = \gamma \times Q \times H_{pbomba}$$


Conceito de rendimento:


$$\begin{split} &\eta_{VC} = \frac{potência\ que\ sa\'i}{potência\ que\ entra} = \frac{potência\ _\acute{u}til}{potência\ _posta\ _em\ _jogo} \\ &\eta_{motor} = \frac{N_B}{N_m} \\ &\eta_{bomba} = \eta_B = \frac{N}{N_B} = \frac{\gamma \times Q \times H_B}{N_B} \\ &\eta_{global} = \frac{N}{N_m} = \frac{\gamma \times Q \times H_B}{N_m} \end{split}$$

Passamos a calcular a perda de carga total antes da bomba:

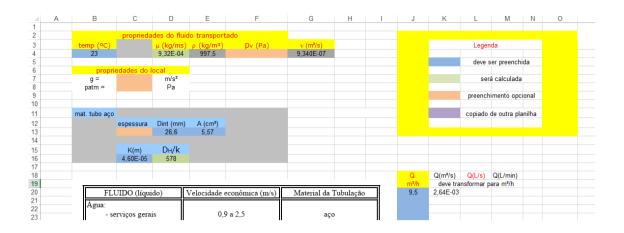
$$\mathbf{H_{paB}} = -\left[0,215 + \left(\frac{-0,22 \times 13600 \times 9,8 + 0,115 \times 997,5 \times 9,8}{997,5 \times 9,8}\right) + \frac{1 \times 2^2}{19,6}\right] \cong 2,47 \text{m}$$

<u>Comentário</u>: nesse caso é possível somente determinar a perda de carga distribuída de modo teórico e optamos em fazê-lo pela fórmula universal:

$$h_f = f \times \frac{L}{D_H} \times \frac{v^2}{2g} = f \times \frac{L}{D_H} \times \frac{Q^2}{2g \times A^2}$$

Para aplicação da fórmula anterior é necessário a determinação de algumas de suas grandezas, tais como: vazão; comprimento do tubo considerado; coeficiente de perda de carga distribuída; diâmetro hidráulico; área da seção livre.

A vazão será obtida de forma direta:


$$Q = \frac{\Delta h \times A_{tanque}}{t} = \frac{0.1 \times (0.739 \times 0.745)}{20.84} \approx 2.64 \times 10^{-3} \frac{m^3}{s}$$

Como a tubulação é de aço 40 com diâmetro nominal de 1" pela ANSI B3610 temos: D_{int} = 26,6 mm; A = 5,57 cm² e K_{aco} = 4,6 e-5 m

Para a água a 74°F, temos:
$$t_C = \frac{100}{180} \times \left(t_F - 32\right) = \frac{100}{180} \times \left(74 - 32\right) \cong 23^{\circ} C \text{ e isto resulta}$$
 em:
$$\rho = 997.5 \frac{kg}{m^3}; v = 0.934 \times 10^{-6} \frac{m^2}{s}.$$

Determinação do coeficiente de perda de carga distribuída, no caso optamos em recorrer a página:

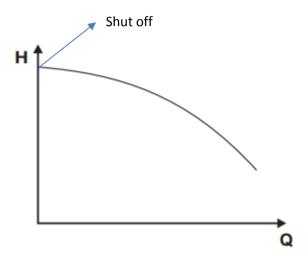
http://www.escoladavida.eng.br/mecfluquimica/planejamento 12015/consulta11.htm

$Q(m^3/h)$	v(m/s)	Re	$f_{Haaland}$	f _{Swamee e Jain}	f _{Churchill}	f _{planilha}	f _{experimental}
9.5	4.74	134984	0.0238	0.0241	0.0241	0.0239	

Portanto:

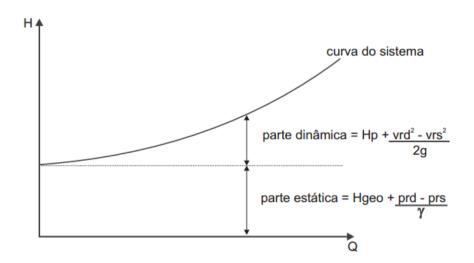
$$h_{\rm f} = 0.0241 \times \frac{1.995}{D_{\rm H}} \times \frac{\left(2.64 \times 10^{-3}\right)^2}{2 \times 9.8 \times \left(5.57 \times 10^{-4}\right)^2} \cong 2.1 \text{m}$$

Obtenha a perda de carga e o coeficiente de perda de carga experimentais para a vazão acima e compare e reflita sobre a comparação. Estime também para esta situação a rugosidade equivalente (K) e compare com o valor tabelado.

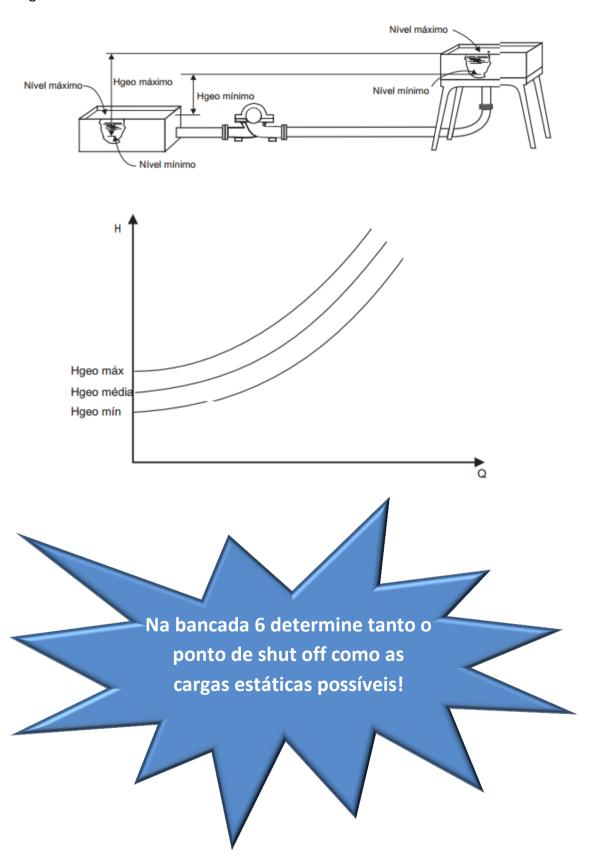


Bancada 6:

Com os dados de HB, determinar para a mesma vazão a Hest.


Comentário

A curva característica da bomba (CCB) tem o seu ponto definido para a vazão nula denominado de **shut off,** que indica o maior valor da carga manométrica oferecido pela bomba e o responsável pelo fluido sair da inércia.



A curva característica da instalação (CCI) tem um ponto para a vazão nula denominado de carga estática e que representa o quanto de carga o fluido necessita receber para deixar a inércia.

$$H_{\text{estática}} = H_{\text{est}} = (z_{\text{final}} - z_{\text{inicial}}) + (\frac{p_{\text{final}} - p_{\text{inicial}}}{\gamma})$$

No caso do laboratório podemos ter os níveis variando o que resultaria o representado a seguir:

Qual a diferença entre a leitura efetuada através do aparelho medidor de vazão eletromagnético (figura A) e a vazão obtida de forma direta (figura B)? Explique em qual delas temos erros.

Figura A

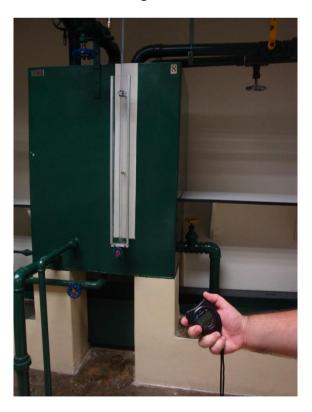
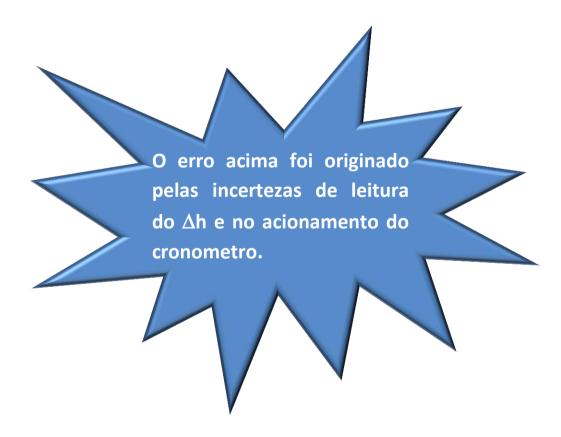


Figura B

$$Q_{\text{medidor_eletromagnático}} = 10,57 \frac{\text{m}^3}{\text{h}}$$


$$Q_{tan \, que} = \frac{\Delta h \times A_{tan \, que}}{t} = \frac{0.1 \times 0.74^{2}}{24.18} = 2.26 \times 10^{-3} \, \frac{m^{3}}{s} = 2.26 \times 10^{-3} \times 3600$$

$$Q_{tan \, que} = 8.14 \, \frac{m^{3}}{h}$$

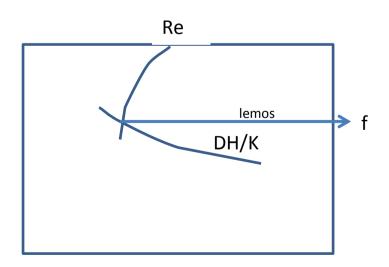
Como o aparelho eletromagnético está calibrado ele é o que registra a vazão correta, portanto ao determinarmos a vazão no tanque estamos cometendo um erro neste caso na ordem de 23%

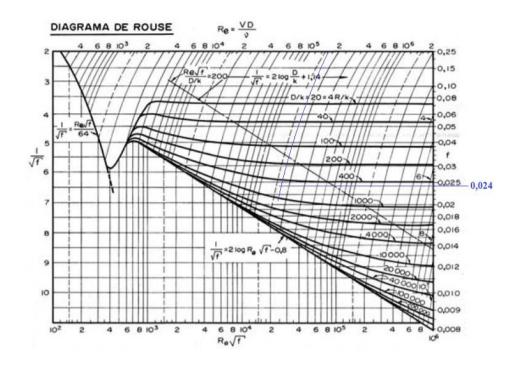
Erro\% =
$$\frac{10,57 - 8,14}{10,57} \times 100$$

Erro\%
$$\approx 22.7\% \approx 23\%$$

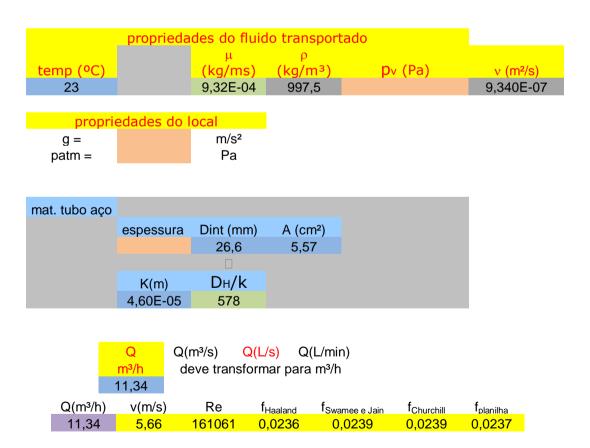
Bancada 8

Com os dados coletados na bancadas que estão especificados a seguir estime o valor do coeficiente de perda de carga distribuída pelo diagrama de Rouse.


- Tubulação de aço (4,6 $\times 10^{-5}\,\rm m)$ com diâmetro nominal de 1" $\left(D_i=26,6mm\to A=5,57cm^2\right)$
- Vazão lida no medidor de vazão eletromagnético igual a 11,34 m³/h
- Temperatura d'água igual a 23°C, portanto: $\rho=997.5\,\frac{kg}{m^3}\to\nu=9.34\times10^{-7}\,\frac{m^2}{s}$


Neste caso o primeiro passo seria calcular a velocidade média do escoamento e em seguida o número de Reynolds.

$$v = \frac{Q}{A} = \frac{\frac{11,34}{3600}}{5,57 \times 10^{-4}} \approx 5,66 \frac{m}{s}$$


$$Re = \frac{5,66 \times 26,6 \times 10^{-3}}{9,34 \times 10^{-7}} \approx 161194,9 \approx 1,6 \times 10^{5}$$

Se tivesse dado $\text{Re} \leq 2000$, ou seja, escoamento laminar, teríamos $f=\frac{64}{\text{Re}}$, mas como o escoamento é turbulento, temos que calcular também $\frac{D_H}{K}=\frac{26,6\times 10^{-3}}{4,6\times 10^{-5}}\cong 578$.

Para comprovar a leitura anterior, mostro a seguir a determinação do "f" pela página: http://www.escoladavida.eng.br/mecfluquimica/planejamento 12015/consulta11.htm

Comparando os resultados constatamos que são próximos.