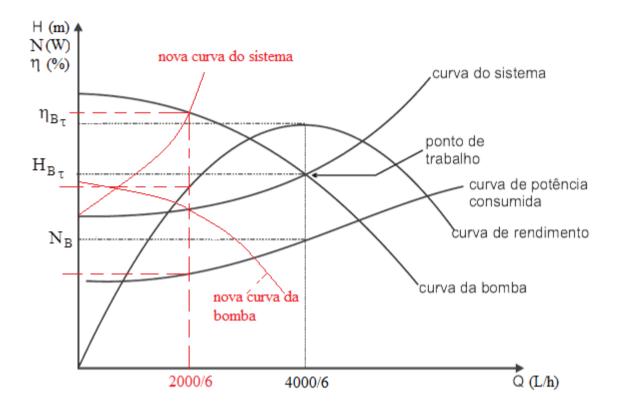
## Segunda aula de ME 5330 – primeiro semestre de 2015



### Respondendo as perguntas da primeira aula

1) Para o enunciado qual é a vazão em volume?

Refletindo sobre o enunciado observamos a existência de duas respostas possíveis:


 no primeiro funcionamento, ou no funcionamento após um dia sem abastecimento de água, temos:

$$Q_{\text{desejada}} = \frac{2 \times (10 \times 200)}{6} = \frac{4000}{6} \frac{L}{h};$$

• após o primeiro abastecimento e não havendo falta d'água,

temos: 
$$Q'_{desejada} = \frac{10 \times 200}{6} = \frac{2000}{6} \frac{L}{h}$$
.

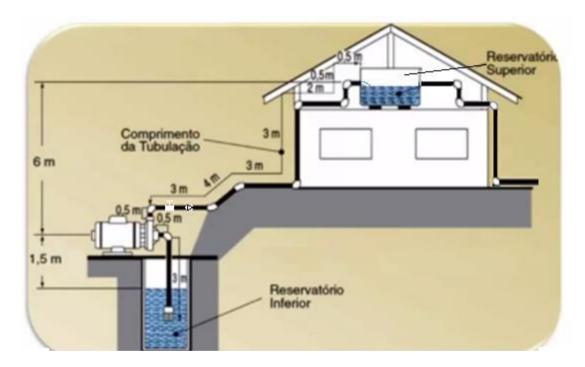
Diante das possibilidades anteriores e não considerando nenhum fator de segurança, observamos a existência de dois pontos de trabalho (cruzamento da CCB com a CCI):



Importante salientar que o fabricante fornece a curva da potência em função da vazão para uma dada condição que geralmente é a água com massa específica igual a 1000 kg/m³ e esta situação raramente representa a condição de trabalho por este motivo não utilizo esta curva e deixo para calcular a potência da bomba recorrendo a equação 9:

$$N_{B} = rac{\gamma imes Q_{ au} imes H_{B_{ au}}}{\eta_{B_{ au}}}$$
 equação 9

Praticando a pedagogia da pergunta, ao observar a primeira resposta, sugiro novas perguntas que devem ser respondidas para a próxima aula:


- 16) Como obtemos a nova curva do sistema?
- 17) Como obtemos a nova curva da bomba?
- 18) Como calculamos a nova rotação da bomba? Como ela pode ser originada?
- 19) Como determinamos o novo valor do comprimento equivalente da válvula controladora da vazão?
- 20) Qual das soluções anteriores é a melhor? Justifique.

2) Para a instalação de bombeamento considerada no exercício como você obtém a carga total na seção inicial?

Novamente temos mais do que uma resposta possível e ela depende do plano horizontal de referência (PHR) adotado:

- adotando o PHR no eixo da bomba, temos:  $H_i = -1.5 + 0 + 0 = -1.5m$ ;
- adotando o PHR no nível de captação, temos:  $H_i = 0 + 0 + 0 = 0$

Importante observar que o valor da carga total de uma dada seção do escoamento dendê do PHR, porém ao efetuar um balanço de cargas (equação da energia) este não depende do PHR, para demonstrar isto recorremos ao exemplo 1 e desenvolvemos a equação da energia da seção inicial a seção final.



• adotando o PHR no eixo da bomba, temos:  $H_i = -1.5m \to H_f = 6 + \frac{\alpha \times v^2}{19.6}$ 

$$H_{i} + H_{B} = H_{f} + H_{p_{total}} : H_{B} = 7.5 + \frac{\alpha \times v^{2}}{19.6} + H_{p_{total}}$$

- adotando o PHR no nível de captação, temos:  $H_i = 0 \to H_f = 7.5 + \frac{\alpha \times v^2}{19.6}$ 

$$H_i + H_B = H_f + H_{ptotal} :: H_B = 7.5 + \frac{\alpha \times v^2}{19.6} + H_{ptotal}$$

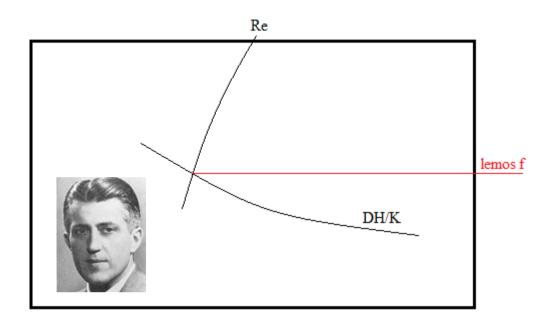
- 3) Como você determina o coeficiente de perda de carga distribuída utilizado na fórmula universal?
  - Conhecida a vazão calculamos a velocidade média do escoamento, no caso do exemplo 1, optando pelo tubo de PVC com juntas soldáveis como a vazão desejada maior era 4000/6 (L/h) escolhemos através da tabela da Jacuzzi bombas (tabela 1) o diâmetro de ¾"de referência que origina um diâmetro interno igual a  $25-2\times1.7=21.6$ mm, portanto:

$$v = \frac{\frac{4000}{1000 \times 6 \times 3600}}{\frac{\pi \times \left(21,6 \times 10^3\right)^2}{4}} \cong 0,505 \frac{m}{s}.$$

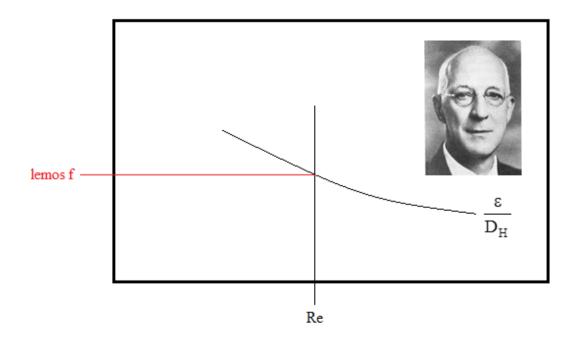
| Vazão                                | Diâmetro do tubo de<br>PVC |
|--------------------------------------|----------------------------|
| Até 2.500 litros/hora                | 25 mm                      |
| Entre 2.500 e 5.000<br>litros/hora   | 32 mm                      |
| Entre 5.000 e 10.000<br>litros/hora  | 40 mm                      |
| Entre 10.000 e 20.000<br>litros/hora | 50 mm                      |

Tabela 1

Com a temperatura do fluido a ser bombeado, obtemos as suas propriedades as quais serão utilizadas para o cálculo do número de Reynolds, no caso do escoamento ser laminar ( $Re \le 2000$ ) temos que o coeficiente de perda de carga distribuída (coeficiente de Darcy) pode ser determinado por:  $f = \frac{64}{Re}$ , para o escoamento turbulento recorremos ao diagrama de Rouse, ou ao diagrama de Moody, ou ainda a equações empíricas, como por exemplo a equação de Churchill. No caso do exemplo, 20°C, como trata-se da água a temos pela página


riedades do mercurio e agua1.htm que 
$$\rho_{\text{água}} = 998.2 \frac{\text{kg}}{\text{m}^3}$$

http://www.escoladavida.eng.br/mecfluquimica/planejamento 12015/prop


$$v_{\text{água}} = 1,004 \times 10^{-6} \, \frac{\text{m}^2}{\text{s}}, \qquad \qquad \text{Re} = \frac{0,505 \times 21,6 \times 10^{-3}}{1,004 \times 10^{-6}} \cong 10865,$$

portanto trata-se de um escoamento turbulento.

• Para o escoamento turbulento desejando utilizar o diagrama de Rouse (1942), temos que calcular  $\frac{D_H}{K}=\frac{21.6}{0.06}\cong360$  .



• Para o escoamento turbulento desejando utilizar o diagrama de Moody (1944), temos que calcular  $\frac{\epsilon}{D_H}=\frac{0.06}{21.6}\cong 0.00278$ 



Podemos recorrer a fórmula de Churchill 
$$f = 8 \times \left[ \left( \frac{8}{Re} \right)^{12} + \frac{1}{\left( A + B \right)^{3/2}} \right]^{1/12}$$
 
$$A = \left\{ -2,457 \times ln \left[ \left( \frac{7}{Re} \right)^{0,9} + \frac{0,27 \times K}{D} \right]^{16} \right\}$$
 
$$B = \left( \frac{37530}{Re} \right)^{16}$$

- $f = \left\{ \left(\frac{64}{Re}\right)^8 + 9.5 \times \left[ ln \left(\frac{\epsilon}{3.7 \times D_H} + \frac{5.74}{Re^{0.9}}\right) \left(\frac{2500}{Re}\right)^6 \right]^{-16} \right\}^{0.125}$
- Podemos recorrer a planilha do Excel publicada na página <a href="http://www.escoladavida.eng.br/mecfluquimica/planejamento">http://www.escoladavida.eng.br/mecfluquimica/planejamento</a> 12015/consulta11.htm aonde devemos:
  - o entrar com os valores da viscosidade ( $\mu$ ) e da massa específica ( $\rho$ ) e aí calcular a viscosidade cinemática  $\nu=\frac{\mu}{\rho}$ ;
  - o entrar com o valor do diâmetro interno da tubulação em milímetro;
  - o entrar com o valor da área da seção livre em cm<sup>2</sup>;
  - o entrar com o valor da rugosidade relativa em metro;
  - o entrar com o valor da vazão em m³/h;
  - o clicar em comparação dos f e ler o que se desejar.
- Experimentalmente, deveríamos ter um trecho onde é possível determina a perda de carga distribuída e com o seu valor conhecido podemos calcular o valor do f como foi executado no curso de mecânica dos fluidos básica na experiência de perda de carga distribuída, vide o trecho da bancada do laboratório mostrado a seguir.

# Trecho da bancada do laboratório

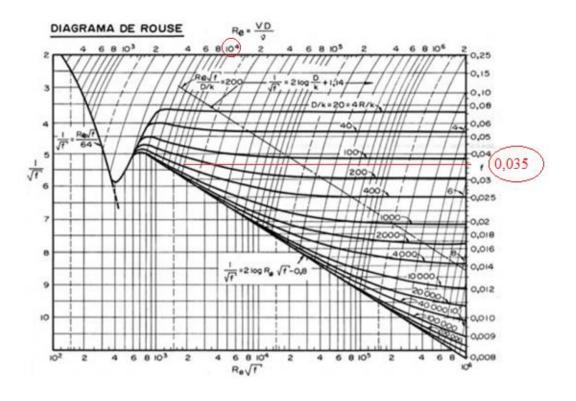


Aplicamos a equação da energia de (1) a (2)



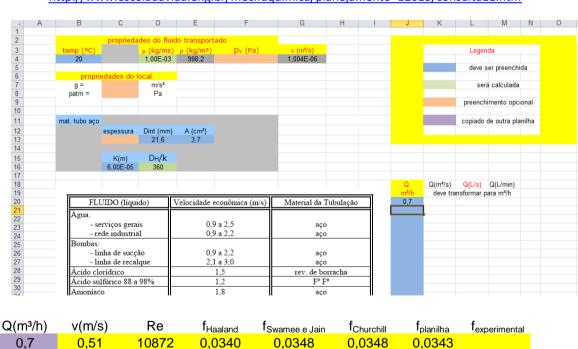
$$\begin{split} H_1 &= H_2 + H_{p_{1-2}} \\ Z_1 + \frac{p_1}{\gamma} + \frac{v_1^2}{2g} &= Z_2 + \frac{p_2}{\gamma} + \frac{v_2^2}{2g} + h_{f_{1-2}} \\ h_{f_{1-2}} &= \frac{p_1 - p_2}{\gamma} = h \times (\frac{\gamma_m - \gamma}{\gamma}) = f \times \frac{L}{D_H} \times \frac{v^2}{2g} \\ f &= \frac{h \times (\frac{\gamma_m - \gamma}{\gamma}) \times D_H \times 2g}{L \times v^2} \\ v &= \frac{4 \times Q}{\pi \times D^2} \rightarrow Q = \frac{A_{tanque} \times \Delta h}{t} \end{split}$$

- 4) Por que o coeficiente de carga distribuída também é denominado de coeficiente de Darcy Weisbach?
  - Historicamente o coeficiente de perda de carga distribuída deveria se chamar coeficiente de Chézy-Weisbach-Darcy-Poiseuille-Reynolds-Fanning-Blausius-K[armaán-Prandtl-Colebrook-White-Rouse-Nikuradse-Moody, porém com o advento das calculadoras eletrônicas e para reduzir o nome passa a ser denominado de coeficiente de Darcy-Weisbach ou só coeficiente de Darcy.
- 5) Defina o diâmetro hidráulico.


$$D_{H} = 4 \times R_{H} = 4 \times \frac{A}{\sigma}$$

- A → área da seção formada pelo fluido
- σ → perímetro molhado, o qual é formado pelo contato do fluido com superfície sólida
- 6) Para o exemplo como você determina o coeficiente de perda de carga distribuída e o diâmetro hidráulico?

Como se trata de um tubo forçado de seção transversal circular o diâmetro hidráulico é igual ao diâmetro interno, já que:  $D_H = 4 \times \frac{\pi \times R^2}{2 \times \pi \times R} = 2 \times R = D \,,$  portanto para o exemplo 1 o di6ametro hidráulico é igual a 21,6 mm (optando pelo tubo de PVC com juntas soldáveis.


Para a determinação do coeficiente de perda de carga distribuída pelo diagrama de

Rouse, temos: 
$$Re \cong 10865 \rightarrow \frac{D_H}{K} = 360$$



### Recorrendo a página:

### http://www.escoladavida.eng.br/mecfluquimica/planejamento 12015/consulta11.htm



7) Qual a diferença entre tubo e tubulação?

Tubulação seria o tubo com acessórios (figura 1) e o tubo está representado pela figura 2.

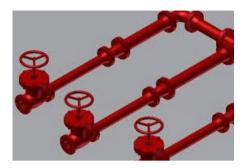



Figura 1

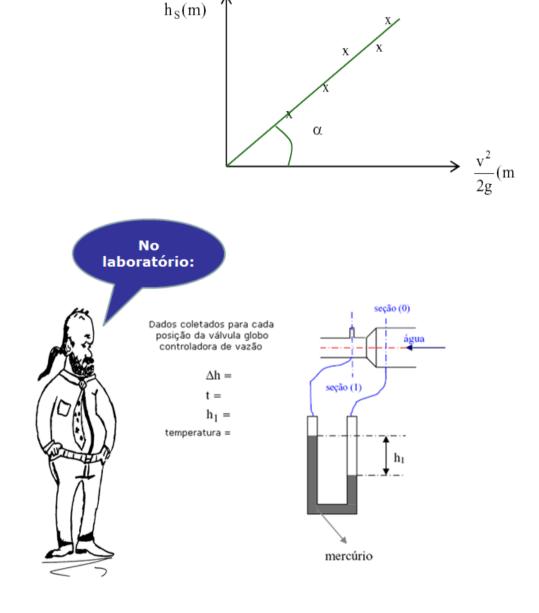


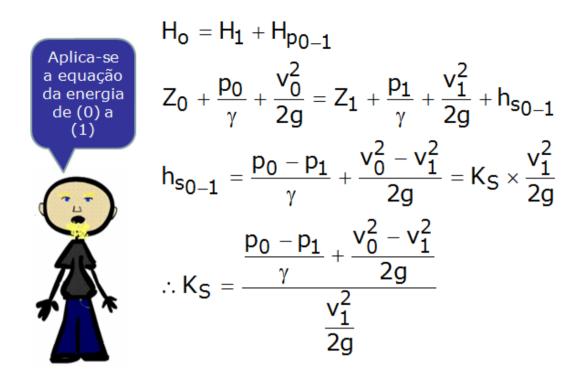
Figura 2

8) Qual o valor da perda de carga distribuída para a tubulação antes da bomba no exemplo dado?

Recorremos a fórmula universal:

$$\begin{split} h_f &= f \times \frac{L}{D_H} \times \frac{v^2}{2g} = f \times \frac{L}{D_H} \times \frac{Q^2}{2g \times A^2} = 0,035 \times \frac{3,5}{0,0216} \times \frac{0,505^2}{19,6} \\ h_f &\cong 0,0738m \end{split}$$


9) Como determinamos o coeficiente de perda de carga singular?


O coeficiente de perda de carga singular (Ks) pode ser obtido através de tabelas, algumas delas são mostradas a seguir e aonde procuraremos determinar os valores do Ks tanto para a válvula de pé com crivo como do cotovêlo de 90<sup>0</sup>.

Uma das principais limitações dos valores dos K<sub>S</sub> tabelados é que os mesmos são tabelado independentemente do material utilizado na fabricação dos acessórios,

além disto, os valores apresentados diferem de tabela para tabela como mostramos a seguir.

- Recorrendo ao livro Mecânica dos Fluidos escrito pelo professor Franco Brunetti, temos:  $K_{SVP}=15 \to K_{S_{cotovelo\_90}0}=0,9$  .
- Recorrendo ao manual da Mipel e tabela apresentada na página  $\frac{\text{http://www.escoladavida.eng.br/mecfluquimica/primeiro2007/avaliação pr}{\text{eestabelecida/informações importantes para projetos.pdf}} \quad \text{nós} \quad \text{temos} \\ \text{respectivamente} \quad K_{SVP} = 10,09 \rightarrow K_{S} \\ \text{cotovelo\_90} = 0,8 \, .$
- Experimentalmente, podemos determinar o Ks através do gráfico representado a seguir:





10) Qual o valor da perda de carga singular na tubulação antes da bomba?

Apresento a resposta com os valores obtidos através do livro do professor franco Brunetti, não por serem mais corretos, mas pelo fato de fornecer os K<sub>S</sub> maiores.

$$h_{SaB} = \sum Ks \times \frac{v^2}{2g} = \sum Ks \times \frac{Q^2}{2g \times A^2} = (15 + 0.9) \times \frac{0.505^2}{19.6}$$
 $h_{SaB} \approx 0.207 \text{m}$ 

11) Para a instalação considerada a tubulação antes da bomba poderia ser denominada de outra forma? Qual seria sua nova denominação? Justifique.

Como a bomba foi instalada acima do nível de captação a tubulação antes da bomba poderia ser denominada de tubulação de sucção, isto porque na mesma teremos em todas as seções pressões menores do que a pressão atmosférica e se trabalharmos na escala efetiva elas serão pressões negativas.

12) Como definimos e determinamos o comprimento equivalente?

É um comprimento imaginário que substitui uma singularidade e que propicia uma perda de carga distribuída  $\left(h_{fLeq}=f\times\frac{Leq}{D_H}\times\frac{v^2}{2g}\right) \text{precisamente igual a perda}$ 

de carga singular causada pela singularidade em questão  $\left(h_S = K_S \times \frac{v^2}{2g}\right)\!,$ 

$$\text{portanto: } f \times \frac{Leq}{D_H} \times \frac{v^2}{2g} = K_S \times \frac{v^2}{2g} \therefore Leq = \frac{K_S \times D_H}{f}$$

13) Explique as vantagens de utilização dos comprimentos equivalentes no cálculo da perda de carga.

Utilizando o comprimento equivalente é levado em conta tanto o material da singularidade como o tipo de escoamento, portanto o resultado é mais confiável.

14) Qual o valor da pressão na seção de entrada da bomba no exemplo 1?

$$H_i = H_e + H_{paB}$$

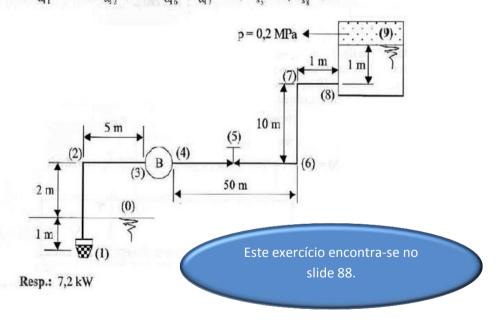
$$z_{i} + \frac{p_{i}}{\gamma} + \frac{v_{i}^{2}}{2g} = z_{e} + \frac{p_{e}}{\gamma} + \frac{\alpha_{e} \times v_{e}^{2}}{2g} + h_{faB} + h_{SaB}$$

Adotando PHR no nível de captação:

$$0 = 1.5 + \frac{p_e}{998.2 \times 9.8} + \frac{1 \times 0.505^2}{19.6} + 0.0738 + 0.207$$

$$p_e \cong -17547,7Pa$$

15) Qual o valor da pressão na seção de entrada da bomba na escala absoluta no exemplo 1?


Considerando a leitura barométrica de 700 mmHg, temos:

$$p_{eabs} = p_e + p_{atm_{local}} = -17547,7 + 0,7 \times 13546 \times 9,8 \cong 75377,9$$
Pa



Proponho a primeira lista de exercícios que encontra-se na bibliografia básica do slide 57 ao slide 88.

19° - Na instalação da figura, determinar a potência da bomba necessária para produzir uma vazão de 10 L/s, (7.18) supondo seu rendimento de 70%. Dados:  $D_{rec}=2.5"$  (6.25 cm);  $D_{ssec}=4"$  (10 cm); aço;  $v=10^6$  m²/s;  $\gamma=10^6$  N/m³;  $L_{eq_1}=20$  m;  $L_{eq_2}=2$  m;  $L_{eq_3}=L_{eq_7}=1$ m;  $k_{s_3}=10$ ;  $k_{s_8}=1$ .

