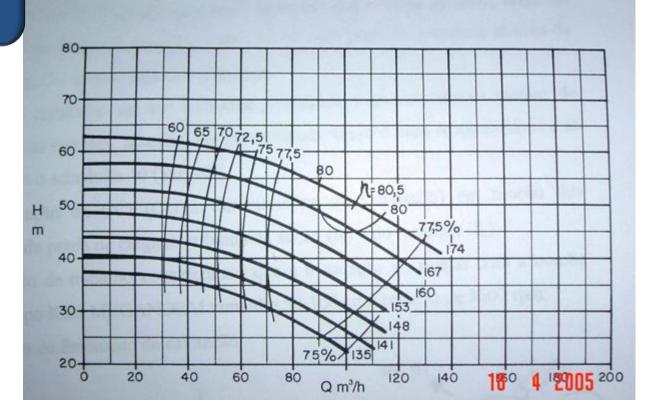


Raimundo (Alemão) Ferreira Ignácio 12/11/2013

Sim todos o fluidos são viscosos, mas estaremos refletindo sobre um novo questionamento: as curvas do fabricante são obtidas para que fluido?

Vamos evocar a resposta de um dos fabricantes de bombas, por exemplo a resposta dada pela KSB


Os valores de altura manométrica e vazão são válidos para fluídos com densidade (ρ) igual a 1,0 kg/dm³ e viscosidade cinemática (ν) até 20 mm²/s.

Se a densidade for diferente 1,0 kg/dm³, porém o intervalo da viscosidade for respeitado, os dados de potência necessária deverão ser multiplicados pelo valor do peso específico correspondente $(\gamma = \rho*g)$.

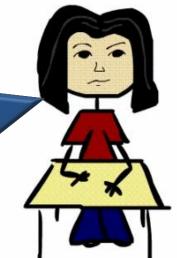
Exemplo de CCB onde reforçamos a resposta anterior.

Importante observar que o fabricante trabalha praticamente só com a bomba (entrada e saída) e aí obtém as curvas para a água, onde considerou:

$$\rho = 1000 \frac{\text{kg}}{\text{m}^3} \rightarrow \text{massa específica}$$

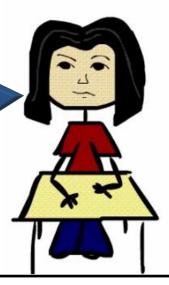
$$v \rightarrow v$$
iscosidade cinemática até $2 \times 10^{-5} \frac{\text{m}^2}{\text{s}}$

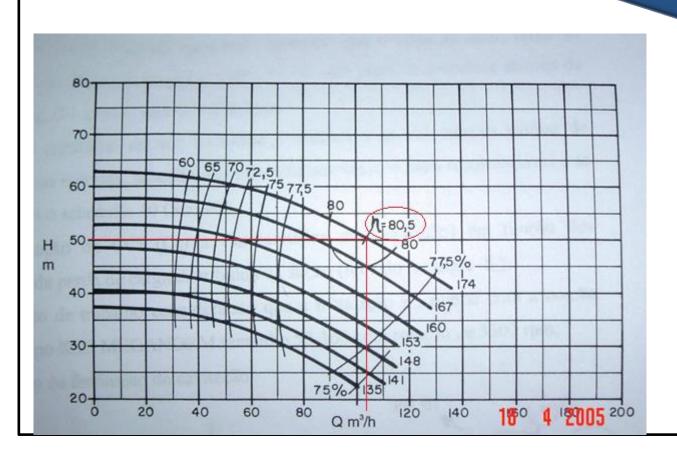
Se for transportado um fluido que não seja a água, ou mesmo se for água com massa específica diferente de 1000 kg/m³, porém com a viscosidade cinemática até 2x10⁻⁵ m²/s, o que se deve fazer mesmo?



No caso da massa específica ser diferente de 1000 kg/m³, porém a viscosidade cinemática ser até 2x10⁻⁵ m²/s só devemos corrigir a potência da bomba

$$N_B = \frac{\gamma \times Q_{\tau} \times H_{B_{\tau}}}{\eta_{B_{\tau}}}$$

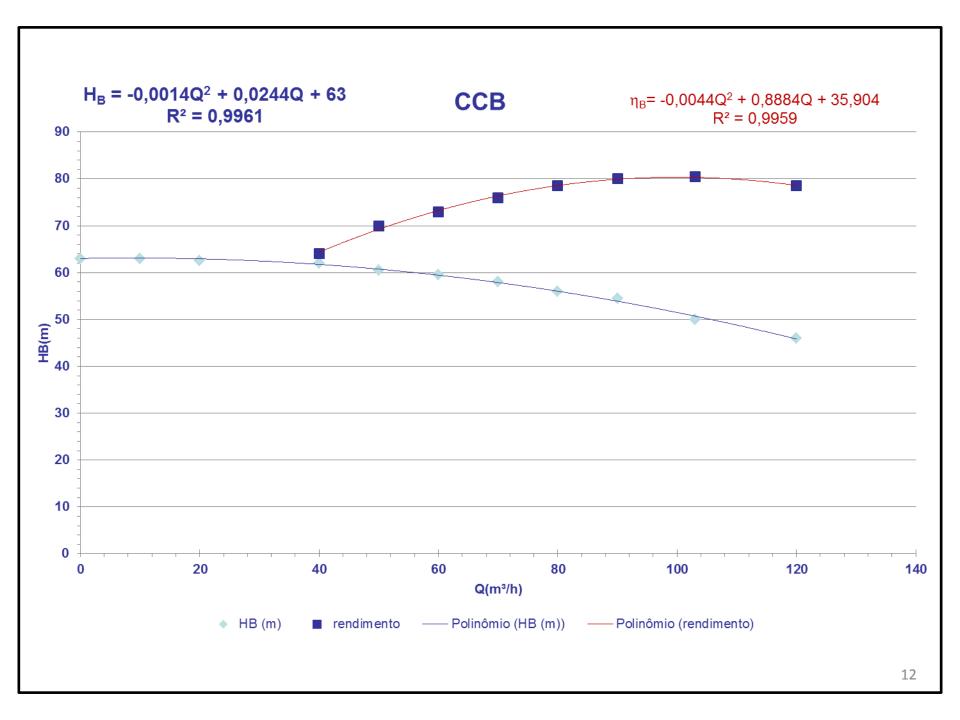

E se a viscosidade for superior a 2x10⁻⁵ m²/s, como no caso do exercício com a soda cáustica?

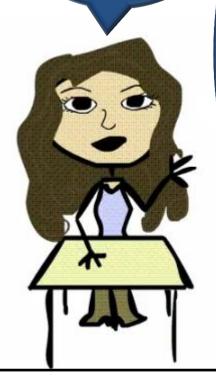

Neste caso devemos corrigir a CCB, onde temos duas situações possíveis:

- 1. a instalação já existe;
- 2. a instalação está sendo projetada (caso do exercício).

Vamos estudar inicialmente o caso em que a instalação já existe.

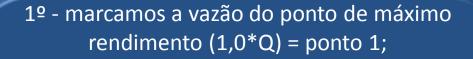
No caso da instalação já existir nós lemos na curva de $H_B = f(Q)$ a vazão, a carga manométrica e o rendimento correspondente ao ponto de máxima eficiência (máximo rendimento).




Considerando a bomba de diâmetro do rotor igual a 174 mm, temos os dados ao lado e que originam as curvas do próximo slide:

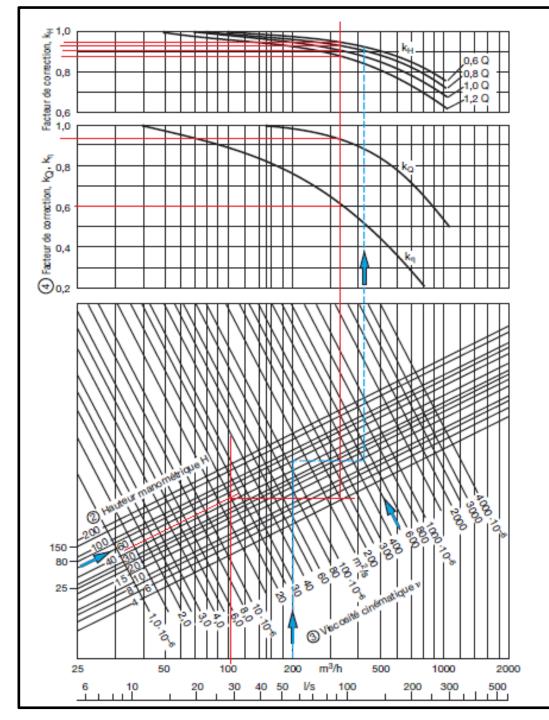
Q (m³/h)	HB (m)	ηΒ (%)
0	63	
10	63	
20	62,5	
40	62	64
50	60,5	70
60	59,5	73
70	58	76
80	56	78,5
90	54,5	80
103	50	80,5
120	46	78,5 ₁₁

Iremos considerar um fluido viscoso?



Sim, por exemplo: considerando um fluido com uma viscosidade de $2.0 \times 10^{-4} \text{ m}^2/\text{s}$, que é maior do que $2 \times 10^{-5} \text{ m}^2/\text{s}$, nesse caso adotamos o seguinte procedimento: no rendimento máximo, lemos a vazão, a qual irá corresponder ao ponto 1,0*Q; em seguida calculamos as vazões: 0,6*Q; 0,8*Q e 1,2*Q e para cada uma delas nós lemos no gráfico do fabricante, ou calculamos pelas linhas de tendências, a carga manométrica e o rendimento que farão parte da tabela a seguir:

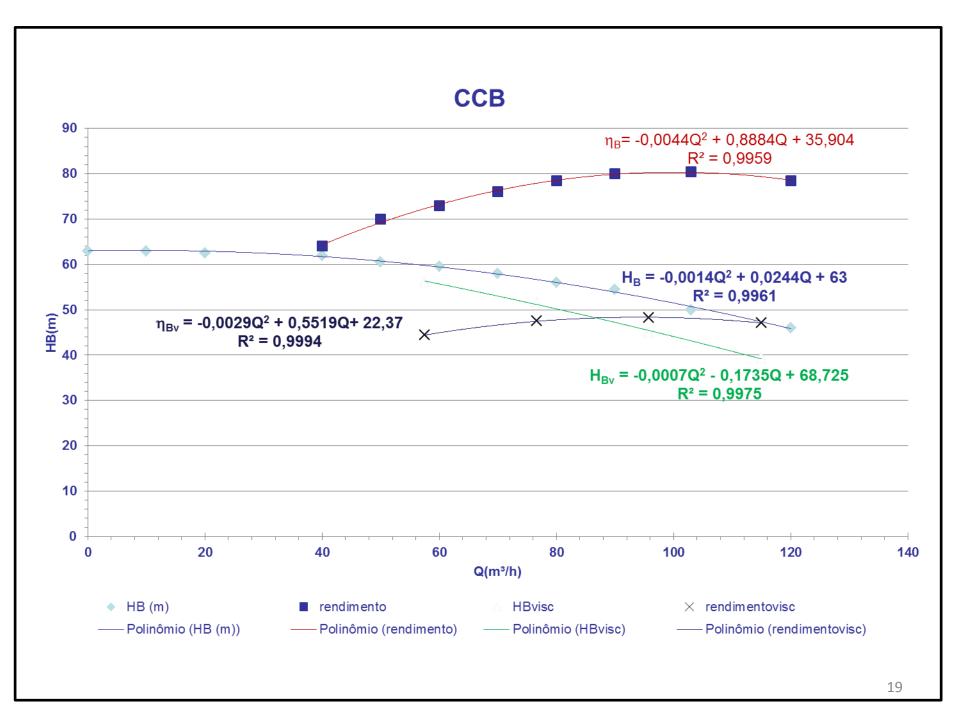
	0,6xQ	0,8xQ	1xQ	1,2xQ
Q (m³/h)	61,8	82,4	103	123,6
H _B (m)	59,2	55,5	50	44,6
η _в (%)	74,0	79.2	80,5	78,5
C_{η}				
C_{Q}				
Сн				
Q* C _Q				
H _B *C _H				
$\eta_{B}^{} C_{\eta}$				


C_η, C_Q e C_H, que são os coeficientes de correção, serão lidos no gráfico correspondente, para tal adotamos o seguinte procedimento:

2º - subimos uma reta vertical até o ponto correspondente a carga manométrica ligada a 1,0*Q = ponto 2;

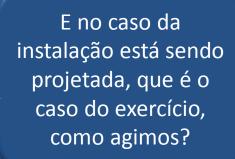
3º - daí puxamos uma reta horizontal até a viscosidade desejada = ponto 3;

 4º - em seguida subimos uma reta vertical até as curvas de correção para se tirar os valores dos coeficientes: Cη; CQ e finalmente os valores de CH

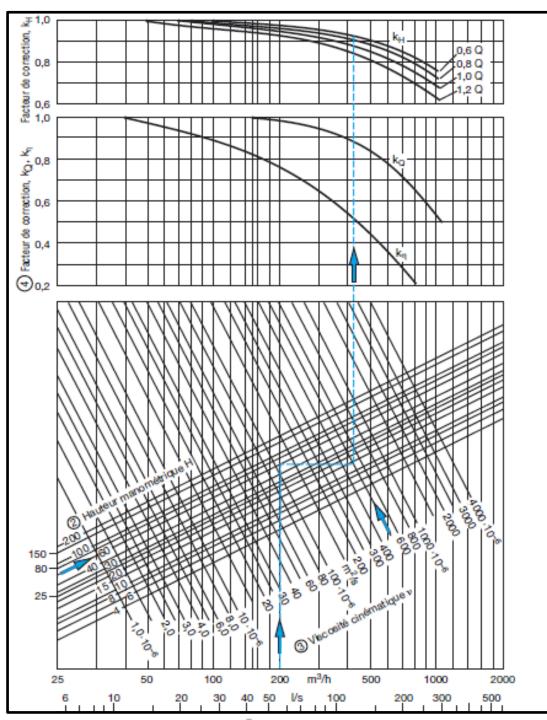

$$K_{\eta} = C_{\eta} \cong 0,60$$

 $K_{Q} = C_{Q} \cong 0,93$
 $1,2Q \to C_{H} \cong 0,88$
 $1,0Q \to C_{H} \cong 0,90$
 $0,8Q \to C_{H} \cong 0,93$
 $0,6Q \to C_{H} \cong 0,95$

E aí completamos a tabela anterior:


	0,6xQ	0,8xQ	1xQ	1,2xQ
Q (m³/h)	61,8	82,4	103	123,6
H _B (m)	59,2	55,5	50	44,6
η _в (%)	74,0	79.2	80,5	78,5
C_{η}	0,60	0,60	0,60	0,60
C _Q	0,93	0,93	0,93	0,93
Сн	0,95	0,93	0,90	0,88
Q* C _Q	57,5	76,6	95,8	115,0
H _B *C _H	56,2	51,6	45	39,3
$\eta_{B}^{} C_{\eta}$	44,4	47,5	48,3	47,1

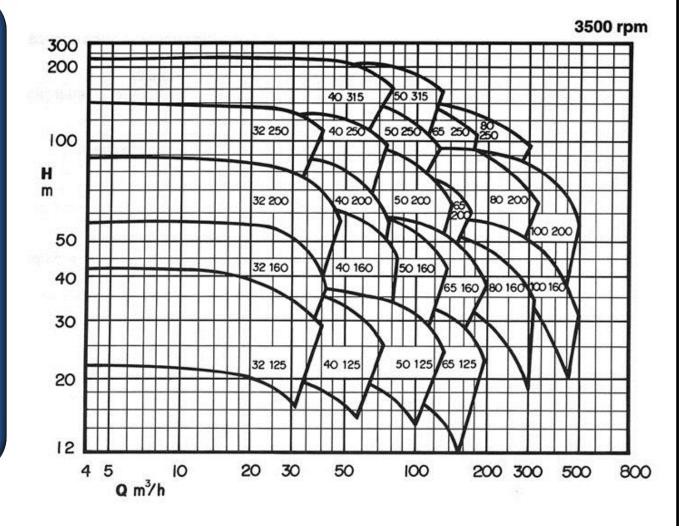

Com a tabela anterior nós obtemos as curvas corrigidas, onde respeitamos as condições para não se ter a recirculação e se ter menor probabilidade de cavitação.



Nesse caso, iniciamos determinando a equação da CCI e através dela, com a vazão de projeto, calculamos a carga manométrica de projeto.

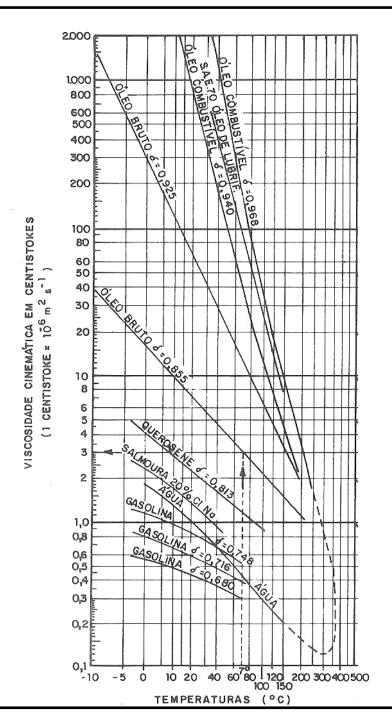
Então, entramos no gráfico para obtenção dos coeficientes de correção com a vazão do líquido viscoso $(Q_{visc} = Q_{projeto})$. Subimos com uma reta vertical até encontrar a reta inclinada correspondente a carga manométrica viscosa (H_{Bvisc} = H_{Bprojeto}), puxamos deste ponto uma reta horizontal até encontrar a reta inclinada correspondente a viscosidade do fluido, puxamos então uma reta vertical para obtenção dos coeficientes de correção.

$$C_{\eta} = \frac{\eta_{B_{visc}}}{\eta_{Ba}} \rightarrow \text{coeficient e que corrige o rendimento}$$


$$C_Q = \frac{Q_{visc}}{Q_a} \rightarrow \text{coeficient e que corrige a vazão}$$

$$C_{H} = \frac{H_{B_{Visc}}}{H_{B_{a}}} \rightarrow$$
 coeficient e que corrige a carga manométrica

Importante observar que o C_H foi obtido para 1,0*Q


Com os coeficientes anteriores, obtemos a vazão para água (Q_a) e a carga manométrica para a água (H_{Ba}) e é com esse par de pontos que escolhemos preliminarmente a bomba no diagrama de tijolos.

Escolhida a bomba, no catálogo do fabricante, obtemos as suas CCBs e aí repetimos o procedimento descrito para a correção das CCBs de uma bomba já existente.

ALGUNS VALORES DE
VISCOSIDADES CINEMÁTICAS
EXTRAÍDOS DO LIVRO: BOMBAS E
INSTALAÇÕES DE BOMBEAMENTO
(pg 642) ESCRITO POR ARCHIBALD
JOSEPH MACINTYRE E EDITADO
PELA LTC EM 2008

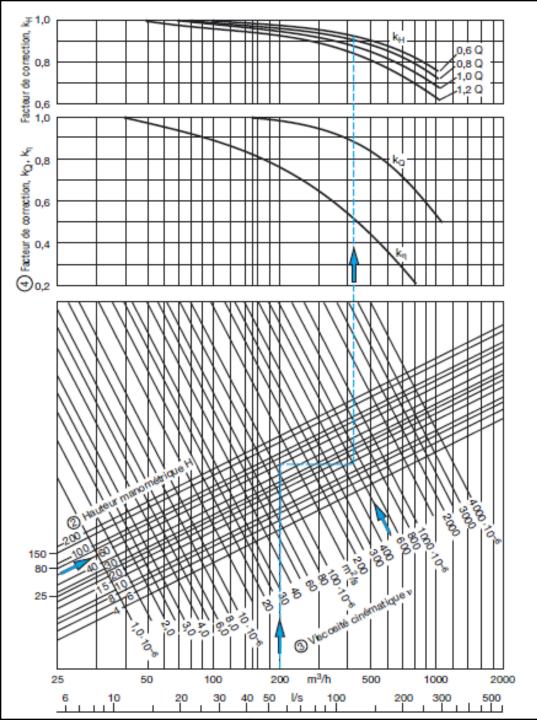
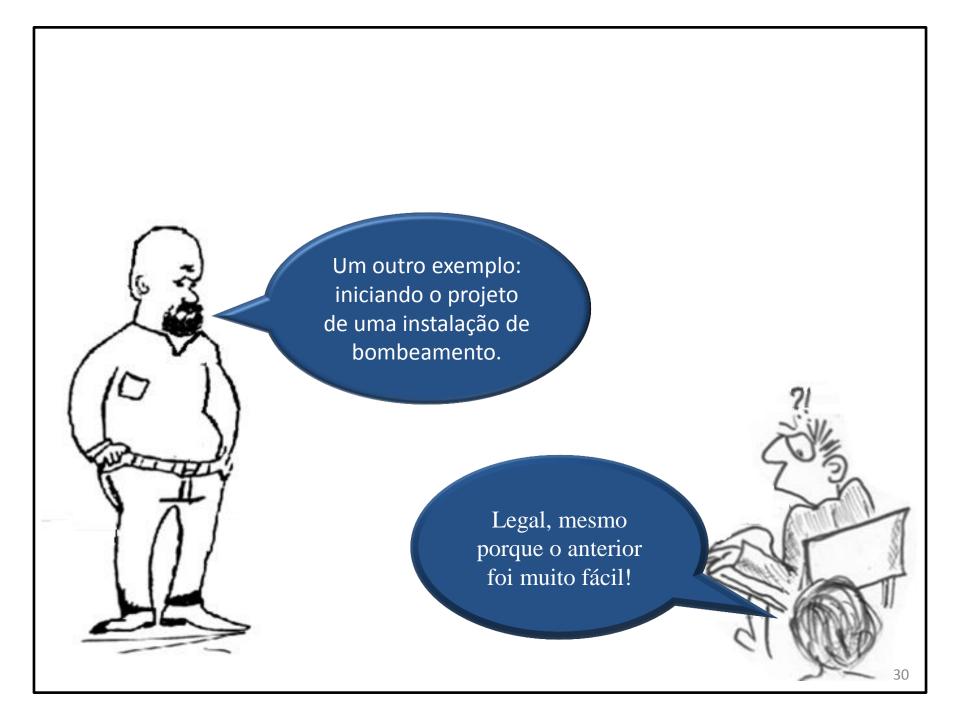
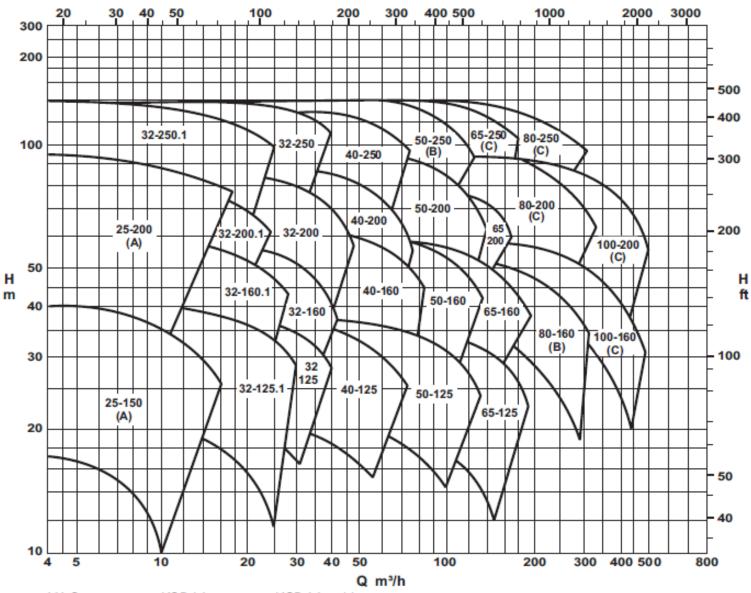


GRÁFICO OBTIDO DO MANUAL DA KSB PARA OBTENÇÃO DOS COEFICIENTES DE CORREÇÃO DA CCB PARA O TRANSPORTE DE FLUIDO VISCOSO



Considerando as características da bomba hidráulica representada pela tabela a seguir e sabendo-se que a instalação irá transportar um fluido com uma viscosidade cinemática igual a 400 cSt (centiStokes), pede-se:

- 1. verificar a necessidade ou não das correções das curvas;
- 2. havendo a necessidade efetuar as correções necessárias.


Q (m³/h)	H _B (m)	η _B (%)
0	210	
10	200	40
20	185	50
30	170	60
40	135	70
50	100	75
60	65	70
70	25	60

Ao se projetar uma instalação de bombeamento de 28,72 m³/h (vazão desejada) de um fluido com massa específica igual a 813 kg/m³ e viscosidade cinemática igual a 300cSt optou-se em trabalhar com um único diâmetro de aço 80 (K = 4.6 e-5)m) com diâmetro nominal igual a 2,5". Através do esboço da instalação o projetista obteve a equação da CCI. Considerando o fator de segurança mínimo e o diagrama de tijolos dado no próximo slide, pede-se especificar o modelo adequado da bomba.

CCI
$$\Rightarrow$$
 H_S = 24,5 + 6845,7 × α × Q² + 9168539,8 × f × Q² \rightarrow [H_S] = m \rightarrow [Q] = $\frac{\text{m}^3}{\text{s}}$

- (A) Somente para KSB Meganorm e KSB Megabloc.
- (B) Somente para KSB Meganorm, KSB Megachem e KSB Megachem V.

Escolhida a bomba e se houver necessidade, corrija suas curvas.

	0,6*Q	0,8*Q	1,0*Q	1,2*Q
Q(m³/h)				
H _B (m)				
η _Β (%)				
C_{η}				
C_{Q}				
C _H				
Q^*C_Q				
H _B *C _H				
$\eta_{B}^{ullet}\mathcal{C}_{\eta}$				

E especifique o diâmetro do rotor e determine o ponto de trabalho calculando a potência da bomba.

