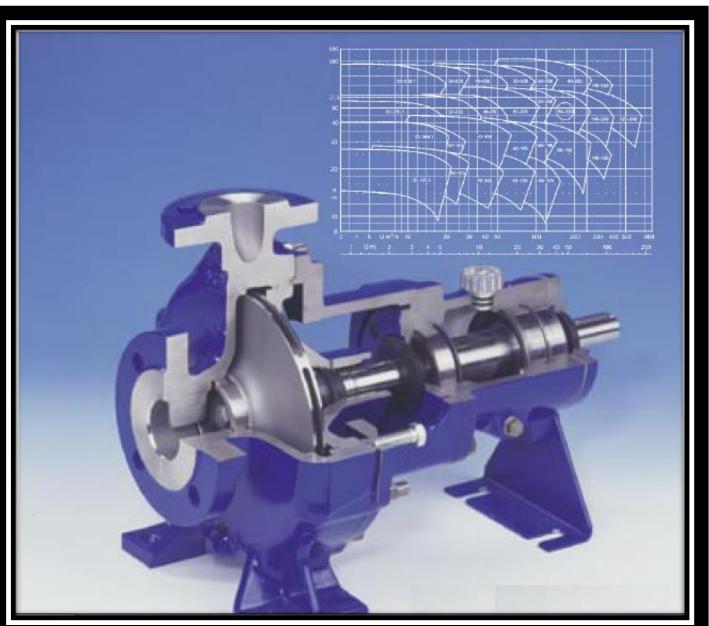
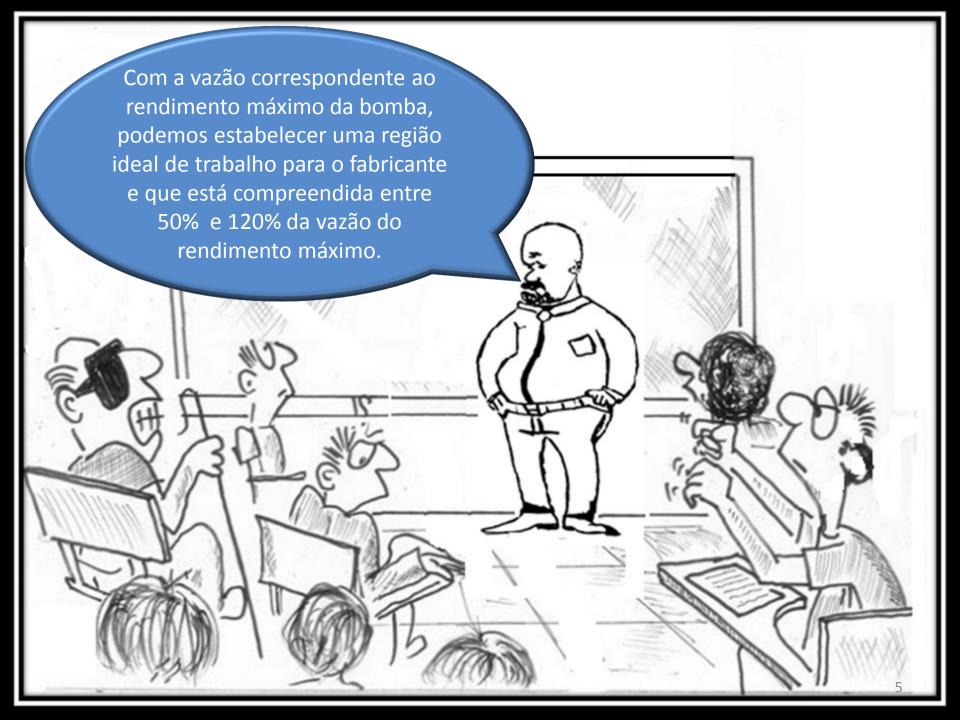
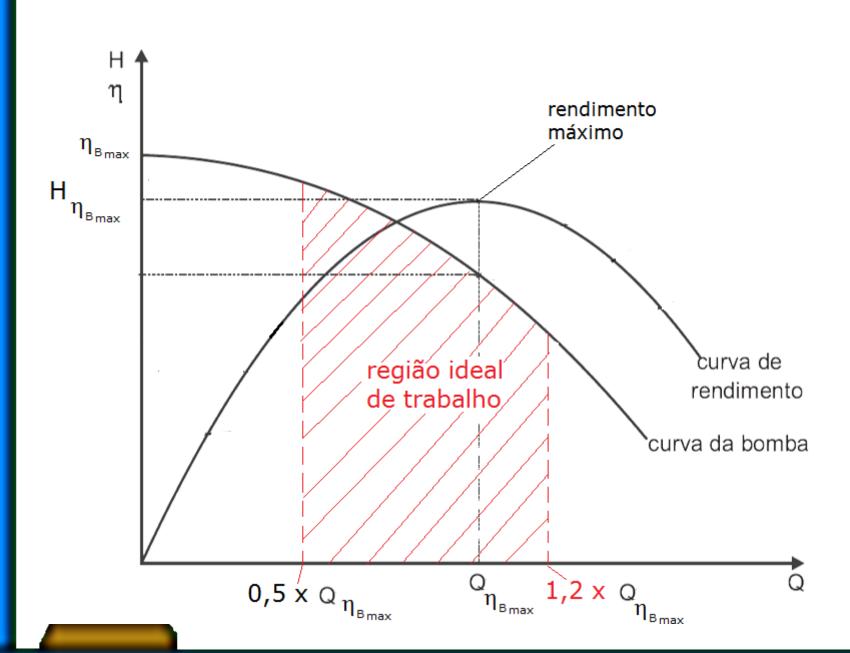


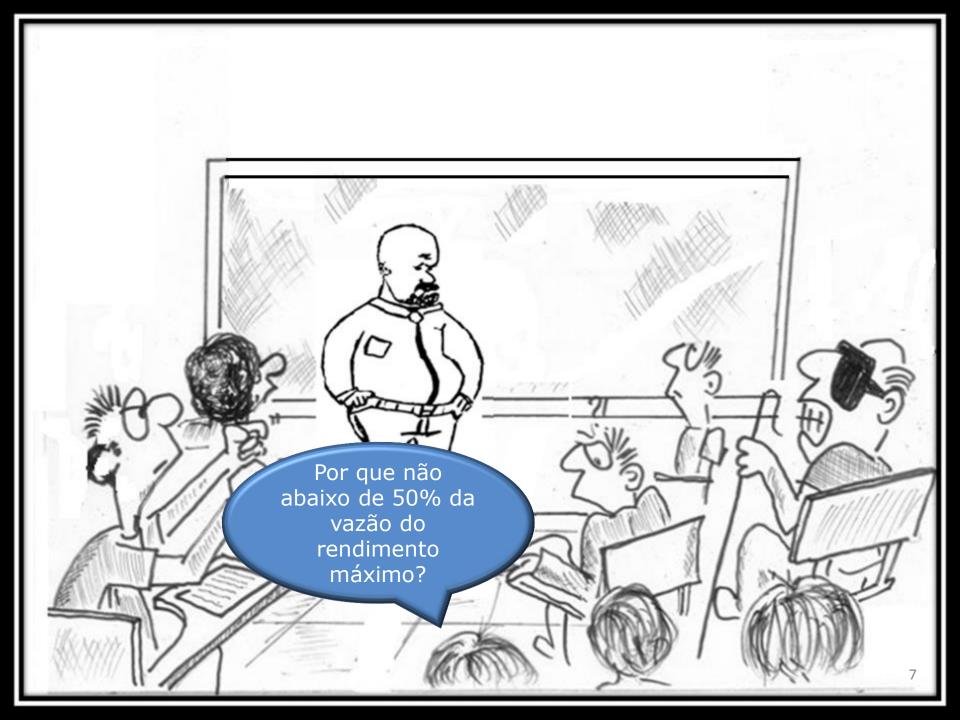
E qual é o ponto de trabalho recomendado pelo fabricante?

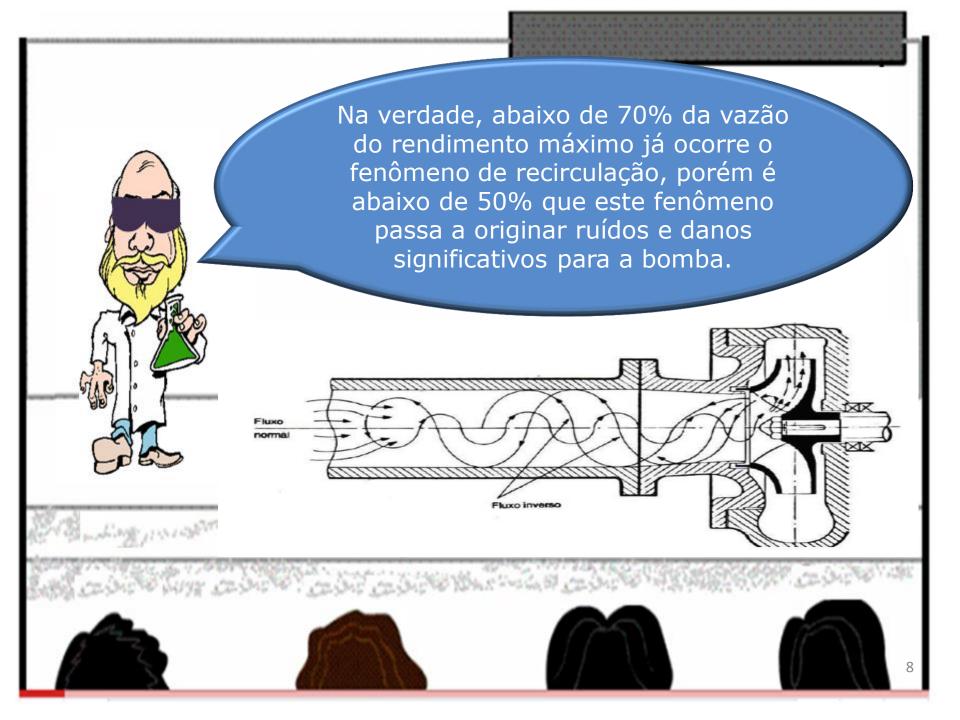


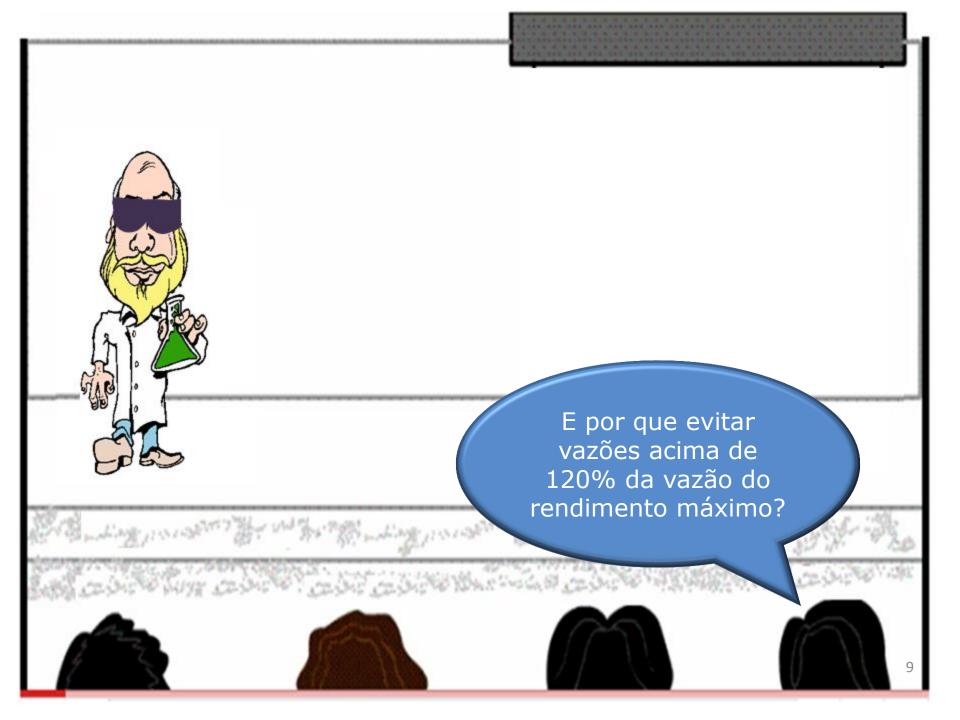




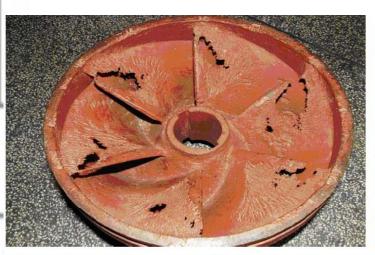


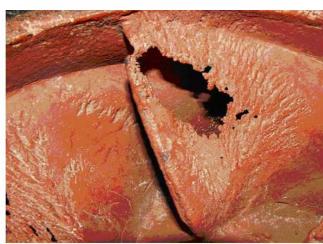


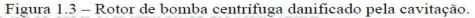




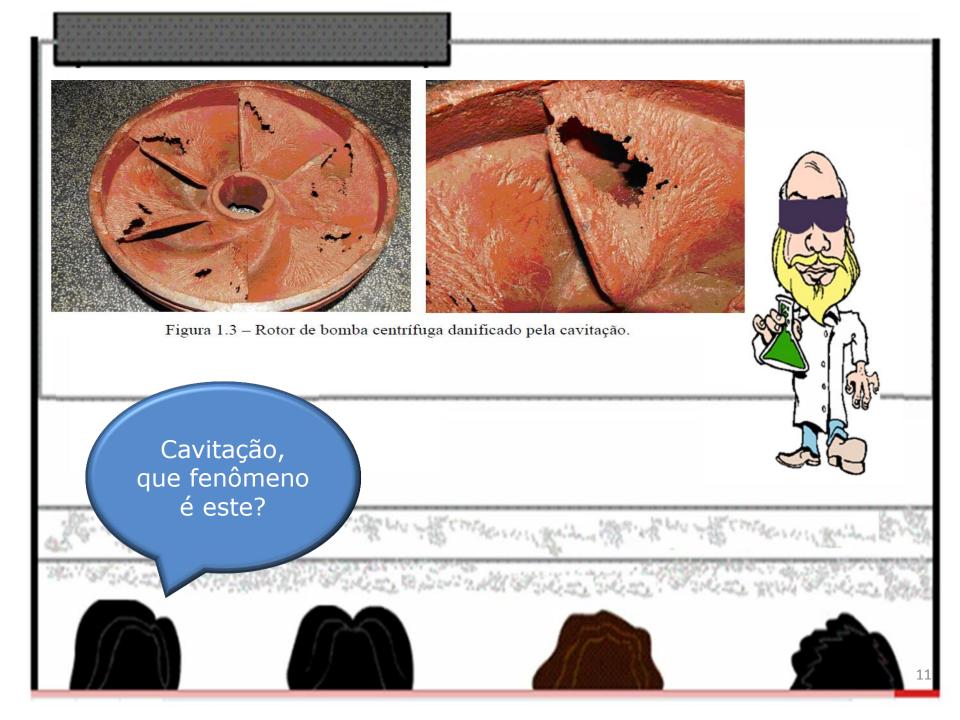
Com vazões acima de 120% da vazão do rendimento máximo a probabilidade de ocorrer o fenômeno de cavitação é maior!







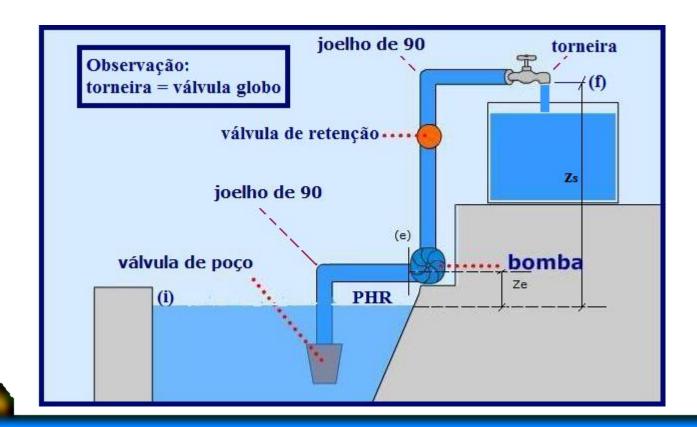
The state of the second to the second second to the second



Em instalação hidráulica cavitação é o fenômeno de vaporização total, ou parcial do fluido na própria temperatura de escoamento devido estar submetido a uma pressão muito baixa e posteriormente voltar a ser líquido com o aumento da pressão, também em um processo isotérmico.

Inicialmente se imaginou que a seção de menor pressão era a seção de entrada da bomba e aí se estudou o fenômeno de cavitação, o qual foi denominado de supercavitação e este ocorre sempre que p_{eabs} for menor ou igual a pressão de vapor.

Considerando a tubulação de sucção da instalação esquematizada abaixo, determine a pressão de entrada da bomba (p_e) ?

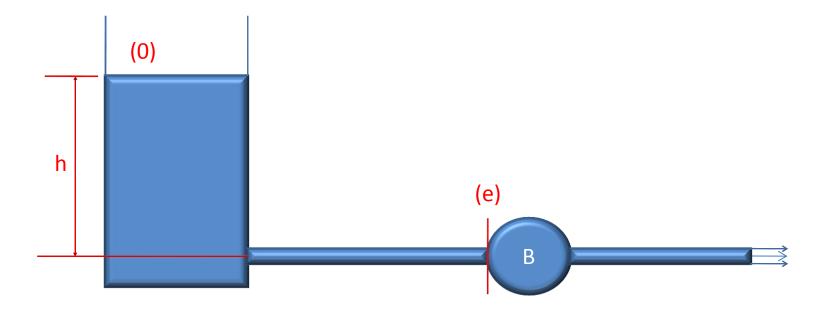


Adotando o PHR no nível de captação, temos:

$$P_{e} = -\gamma \times \left[z_{e} + \frac{v_{e}^{2}}{2g} + f \times \frac{\left(L_{aB} + \sum Le q_{aB} \right)}{D_{H}} \times \frac{v_{e}^{2}}{2g} \right]$$

Será que a equação anterior pode-se ser aplicada em todas as instalações?

Para responder a pergunta anterior, calcule a pressão na entrada da bomba para o esquema a seguir:



Adotando o PHR no nível de captação, temos:

$$P_{e} = -\gamma \times \left[-h + \frac{v_{e}^{2}}{2g} + f \times \frac{\left(L_{aB} + \sum Le q_{aB}\right)}{D_{H}} \times \frac{v_{e}^{2}}{2g} \right]$$

Portanto a pressão de entrada deve ser determinada aplicando-se a equação da energia.

Visualizando a cavitação

Visualizando a cavitação

Pelo fato do fenômeno de cavitação poder comprometer todo o projeto de uma instalação de bombeamento alguns cuidados preliminares devem ser tomados para evitá-lo, cuidados estes onde objetivamos trazer a pe o mais perto possível da patm, ou até mesmo superior a ela.

Considerando a equação abaixo, quais seriam os cuidados que deveriam ser adotados?

$$P_{e} = -\gamma \times \left[z_{e} + \frac{v_{e}^{2}}{2g} + f \times \frac{\left(L_{aB} + \sum Le q_{aB}\right)}{D_{H}} \times \frac{v_{e}^{2}}{2g} \right]$$

Os cuidados adotados na tentativa de evitar o fenômeno de cavitação seriam:

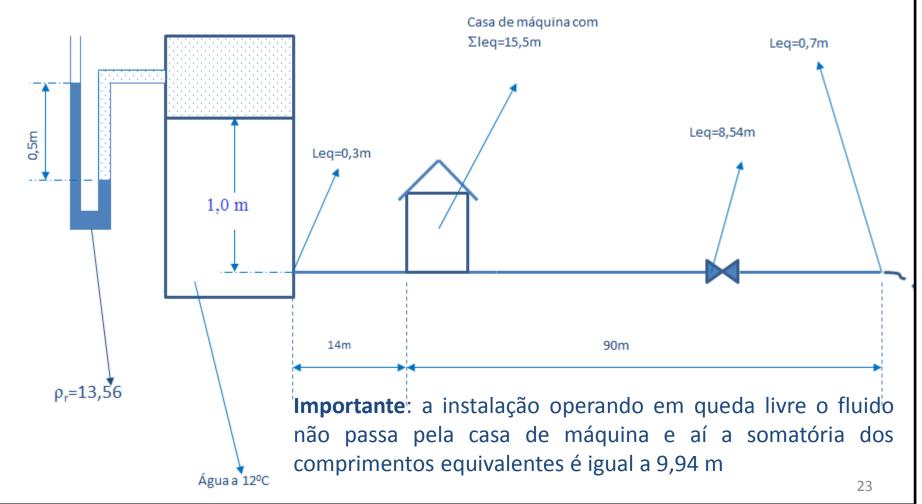
- $1^o \rightarrow$ a bomba deve ser instalada o mais perto possível do nível de captação com a finalidade de diminuir $Z_e,$ ou, se possível, a bomba deve ser instalada abaixo do nível de captação (bomba "afogada") com isto $Z_e < 0$.
- $2^{o} \rightarrow$ a tubulação antes da bomba deve ser a menor possível com a finalidade de diminuir a H_{paB} .
 - $3^{o} \rightarrow$ na tubulação antes da bomba devem ser usados os acessórios estritamente necessários com a finalidade de diminuir a H_{paB} .
 - $4^{\rm o} \rightarrow {\rm o}$ diâmetro da tubulação antes da bomba deve ser um diâmetro imediatamente superior ao diâmetro de recalque com a finalidade, tanto de diminuir a carga cinética de entrada da bomba, quanto diminuir $H_{\rm paB}$.
 - $5^{o} \rightarrow o$ ponto de trabalho da bomba deve estar o mais próximo do ponto de rendimento máximo.

Nota: Por questão de economia, sempre que possível, não se considera o cuidado 4º mencionado acima, já que quanto maior o diâmetro maior o custo da tubulação e a decisão de não considerá-lo será tomada no final do projeto.

A instalação de bombeamento a seguir, foi projetada para transportar água a 12ºC. Pede-se:

- a. a equação da curva característica da instalação (CCI);
- b. a possibilidade da mesma trabalhar em queda livre;
- c. a sua representação gráfica.

Dado: tubulação de aço 40 com diâmetro nominal de 1".



Obtendo dados:

$$\text{água} \rightarrow 12^{0}\text{C} \Rightarrow \rho_{\text{água}} = 999,5 \frac{\text{kg}}{\text{m}^{3}}; \mu_{\text{água}} = 1,24 \times 10^{-3} \frac{\text{kg}}{\text{m} \times \text{s}}$$

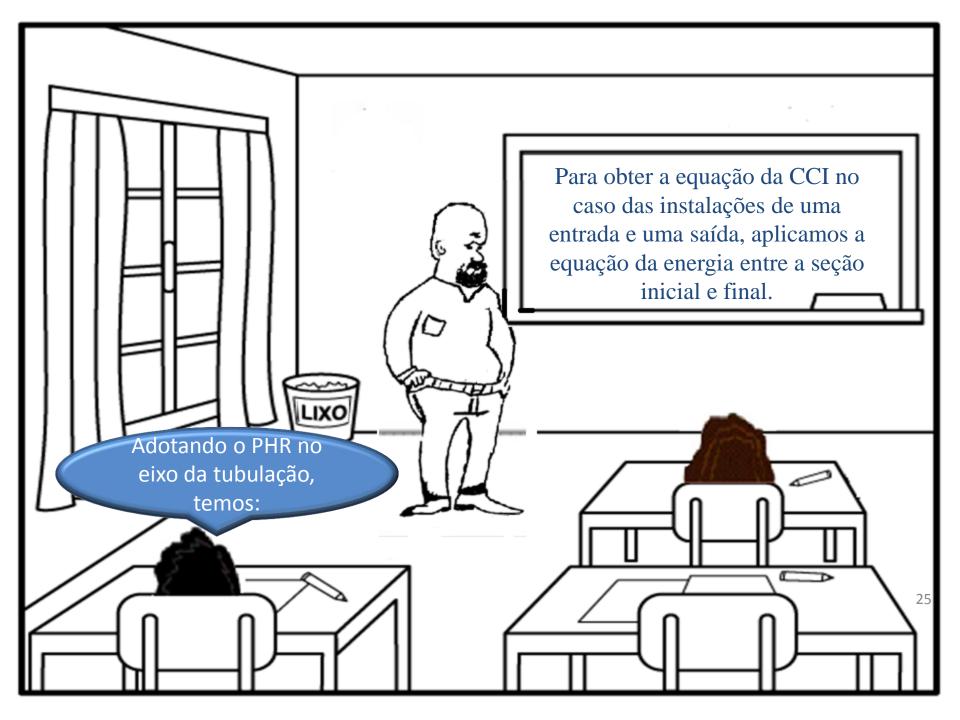
$$\nu_{\text{água}} = 1,236 \times 10^{-6} \frac{\text{m}^{2}}{\text{s}}$$

aço
$$\Rightarrow$$
 D_N = 1" \rightarrow espessura 40 \rightarrow D_{int} = 26,6mm \rightarrow A = 5,57cm²

$$K = 4.6 \times 10^{-5} \text{ m} \rightarrow \frac{D_H}{K} \cong 578$$

$$\rho_{r} = \frac{\rho}{\rho_{padrão}} : \rho_{Hg} = 13,56 \times 1000 = 13560 \frac{kg}{m^{3}}$$

$$p_{ar} = 0.5 \times \gamma_{Hg} = 0.5 \times 13560 \times 9.8 = 66444 \frac{N}{m^2} (ou Pa)$$



$$H_{inicial} + H_{sistema} = H_{final} + H_{ptotais}$$

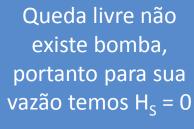
$$1 + \frac{66444}{999,5 \times 9,8} + 0 + H_S = 0 + 0 + \frac{1 \times \alpha_f \times Q^2}{19,6 \times (5,57 \times 10^{-4})^2} + \frac{1}{19,6 \times (5$$

$$f \times \frac{(104 + 0.3 + 9.94 + 8.54 + 0.7)}{0.0266} \times \frac{Q^2}{19.6 \times (5.57 \times 10^{-4})^2}$$

$$7.8 + H_S = 164449.9 \times \alpha_f \times Q^2 + 763393613.7 \times f \times Q^2$$

⇒ equação da CCI

$$H_S = -7.8 + 164449.9 \times \alpha_f \times Q^2 + 763393613.7 \times f \times Q^2$$



$$0 = H_{est\'atica} + \left(\frac{\alpha_f}{2g \times A^2} + f \times \frac{\left(L + \sum Leq\right)}{D_H} \times \frac{1}{2g \times A^2}\right) \times Q_{queda_livre}^2$$

A CARGA ESTÁTICA TEM QUE SER NEGATIVA PARA EXISTIR O ESCOAMENTO EM QUEDA LIVRE!

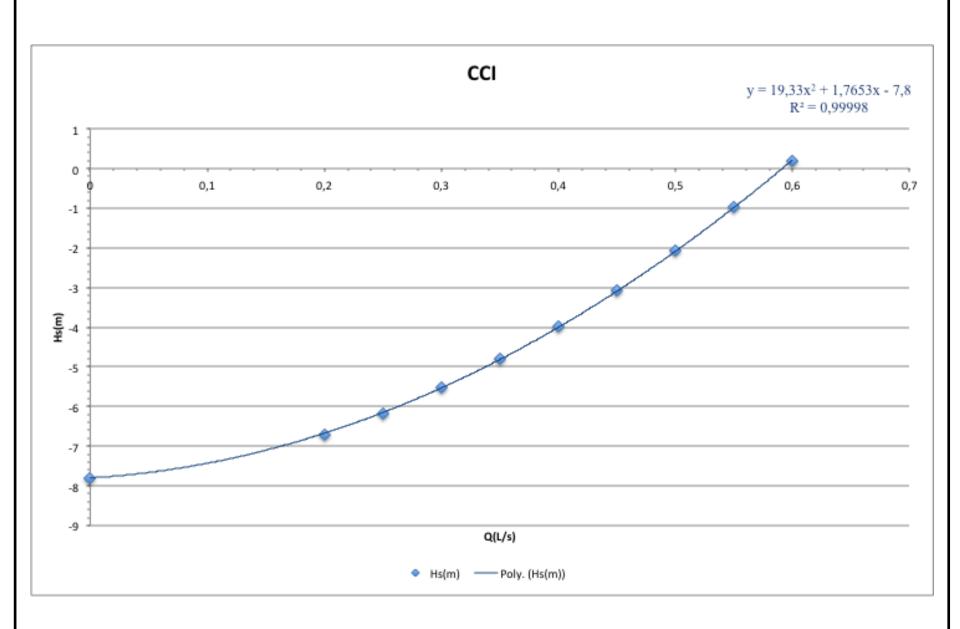
$$Q_{qL} = \sqrt{\frac{-H_{estatica}}{\alpha_f + f \times \frac{\left(L + \sum Leq\right)}{D_H} \times \frac{1}{2g \times A^2}}}$$

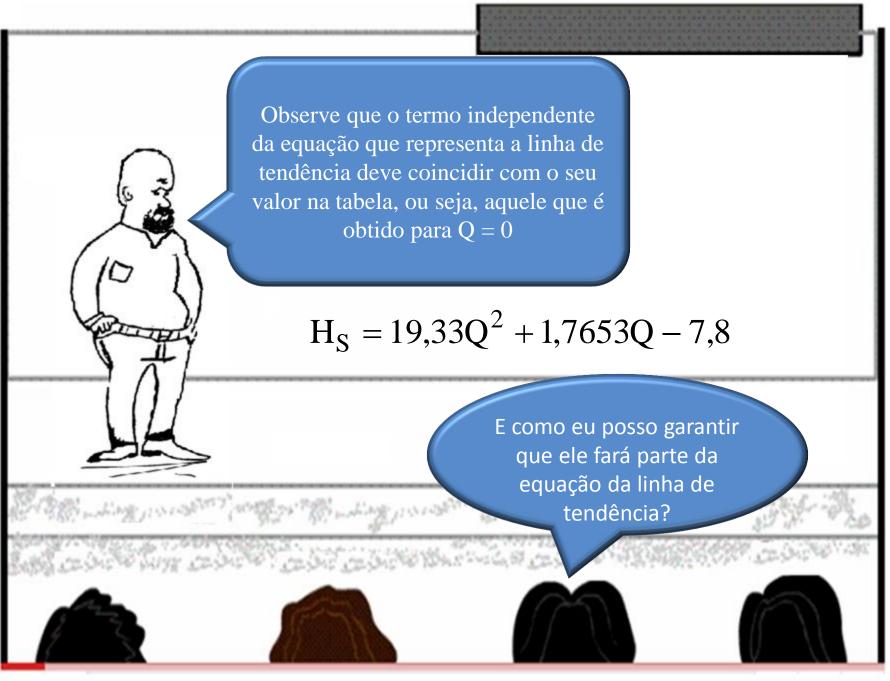
Como a carga
estática do exercício
é – 7,8 m, podemos
afirmar que existe o
escoamento em
queda livre

Para obter a representação gráfica da CCI, vamos recorrer ao Excel e adotamos um intervalo de vazões, por exemplo de 0 a 0,6 L/s

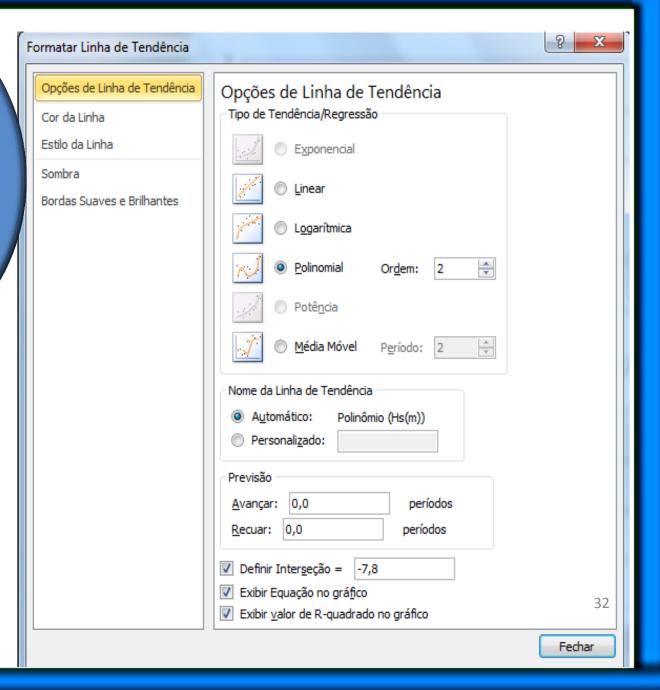
$$H_S = -7.8 + 164449.9 \times \alpha_f \times Q^2 + 763393613.7 \times f \times Q^2$$

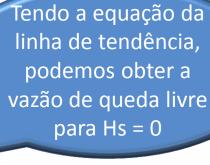
Q (L/s)	f	Re	α	Hs(m)
0				-7,8
0,2	0,0359	7727	1	-6,7
0,25	0,0341	9659	1	-6,2
0,3	0,0328	11591	1	-5,5
0,35	0,0318	13523	1	-4,8
0,4	0,031	15455	1	-4,0
0,45	0,0303	17387	1	-3,1
0,5	0,0298	19319	1	-2,1
0,55	0,0293	21251	1	-0,984
0,6	0,0289	23182	1	0,202





Para que o termo independente da equação da linha de tendência esteja correto, devemos definir a sua interseção, vide quadro do Excel ao lado.





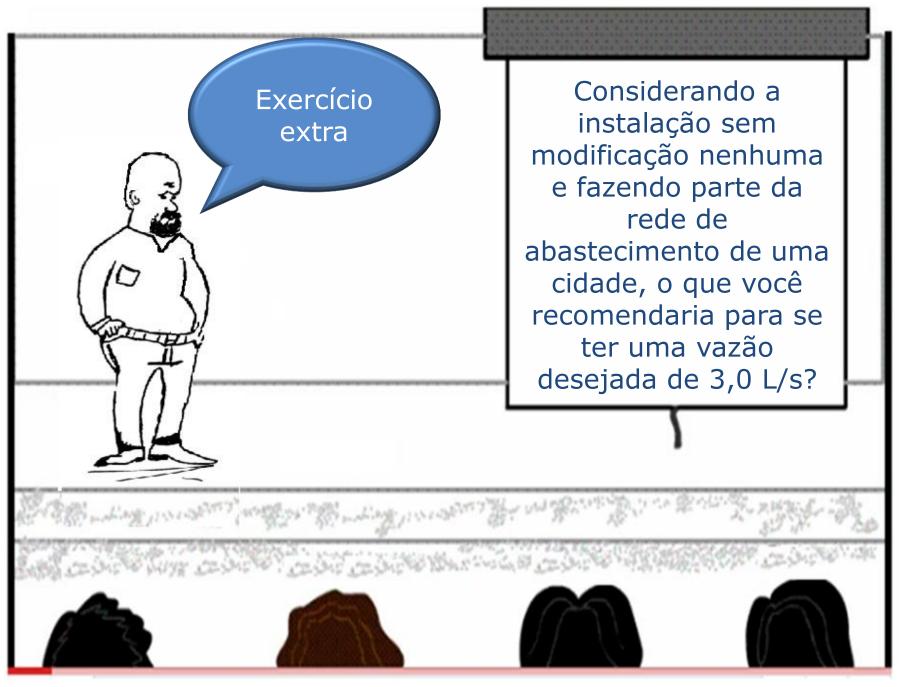
$$0 = 19,33Q_{qL}^2 + 1,7653Q_{qL} - 7,8$$

$$Q_{qL} = \frac{-1,7653 + \sqrt{1,7653^2 + 4 \times 19,33 \times 7,8}}{2 \times 19,33}$$

$$Q_{qL} \cong 0,591 \frac{L}{s}$$

Outra maneira para determinação da vazão de queda livre: método interativo

Q (L/s)	f	Re	a	Hs(m)
0				-7,8
0,2	0,0359	7727	1	-6,7
0,4	0,031	15455	1	-4,0
0,5	0,0298	19319	1	-2,1
0,57	0,0291	22023	1	-0,529
0,58				
0,59				
0,5912				



$$H_{inicial} + H_{sistema} = H_{final} + H_{p_{totais}}$$

$$z_i + \frac{p_i}{\gamma} + \frac{y_i \times \alpha_i \times Q^2}{2g \times A_i^2} + H_S = z_f + \frac{p_f}{\gamma} + \frac{y_f \times \alpha_f \times Q^2}{2g \times A_{l''}^2} + f \times \frac{\left(L + \sum Leq\right)}{D_H} \times \frac{Q^2}{2g \times A_{l''}^2}$$

$$1 + \frac{66444}{999,5 \times 9,8} + 0 + H_S = 0 + 0 + \frac{1 \times \alpha_f \times Q^2}{19,6 \times \left(5,57 \times 10^{-4}\right)^2} + \frac{\text{Passando pela casa de máquina.}}{19,6 \times \left(5,57 \times 10^{-4}\right)^2} + \frac{1 \times \alpha_f \times Q^2}{19,6 \times \left(5,57 \times 10^{-4}\right)^2} + \frac{1 \times \alpha_f \times Q^2}{19,6 \times \left(5,57 \times 10^{-4}\right)^2} + \frac{1 \times \alpha_f \times Q^2}{19,6 \times \left(5,57 \times 10^{-4}\right)^2} + \frac{1 \times \alpha_f \times Q^2}{19,6 \times \left(5,57 \times 10^{-4}\right)^2} + \frac{1 \times \alpha_f \times Q^2}{19,6 \times \left(5,57 \times 10^{-4}\right)^2} + \frac{1 \times \alpha_f \times Q^2}{19,6 \times \left(5,57 \times 10^{-4}\right)^2} + \frac{1 \times \alpha_f \times Q^2}{19,6 \times \left(5,57 \times 10^{-4}\right)^2} + \frac{1 \times \alpha_f \times Q^2}{19,6 \times \left(5,57 \times 10^{-4}\right)^2} + \frac{1 \times \alpha_f \times Q^2}{19,6 \times \left(5,57 \times 10^{-4}\right)^2} + \frac{1 \times \alpha_f \times Q^2}{19,6 \times \left(5,57 \times 10^{-4}\right)^2} + \frac{1 \times \alpha_f \times Q^2}{19,6 \times \left(5,57 \times 10^{-4}\right)^2} + \frac{1 \times \alpha_f \times Q^2}{19,6 \times \left(5,57 \times 10^{-4}\right)^2} + \frac{1 \times \alpha_f \times Q^2}{19,6 \times \left(5,57 \times 10^{-4}\right)^2} + \frac{1 \times \alpha_f \times Q^2}{19,6 \times \left(5,57 \times 10^{-4}\right)^2} + \frac{1 \times \alpha_f \times Q^2}{19,6 \times \left(5,57 \times 10^{-4}\right)^2} + \frac{1 \times \alpha_f \times Q^2}{19,6 \times \left(5,57 \times 10^{-4}\right)^2} + \frac{1 \times \alpha_f \times Q^2}{19,6 \times \left(5,57 \times 10^{-4}\right)^2} + \frac{1 \times \alpha_f \times Q^2}{19,6 \times \left(5,57 \times 10^{-4}\right)^2} + \frac{1 \times \alpha_f \times Q^2}{19,6 \times \left(5,57 \times 10^{-4}\right)^2} + \frac{1 \times \alpha_f \times Q^2}{19,6 \times \left(5,57 \times 10^{-4}\right)^2} + \frac{1 \times \alpha_f \times Q^2}{19,6 \times \left(5,57 \times 10^{-4}\right)^2} + \frac{1 \times \alpha_f \times Q^2}{19,6 \times \left(5,57 \times 10^{-4}\right)^2} + \frac{1 \times \alpha_f \times Q^2}{19,6 \times \left(5,57 \times 10^{-4}\right)^2} + \frac{1 \times \alpha_f \times Q^2}{19,6 \times \left(5,57 \times 10^{-4}\right)^2} + \frac{1 \times \alpha_f \times Q^2}{19,6 \times \left(5,57 \times 10^{-4}\right)^2} + \frac{1 \times \alpha_f \times Q^2}{19,6 \times \left(5,57 \times 10^{-4}\right)^2} + \frac{1 \times \alpha_f \times Q^2}{19,6 \times \left(5,57 \times 10^{-4}\right)^2} + \frac{1 \times \alpha_f \times Q^2}{19,6 \times \left(5,57 \times 10^{-4}\right)^2} + \frac{1 \times \alpha_f \times Q^2}{19,6 \times \left(5,57 \times 10^{-4}\right)^2} + \frac{1 \times \alpha_f \times Q^2}{19,6 \times \left(5,57 \times 10^{-4}\right)^2} + \frac{1 \times \alpha_f \times Q^2}{19,6 \times \left(5,57 \times 10^{-4}\right)^2} + \frac{1 \times \alpha_f \times Q^2}{19,6 \times \left(5,57 \times 10^{-4}\right)^2} + \frac{1 \times \alpha_f \times Q^2}{19,6 \times \left(5,57 \times 10^{-4}\right)^2} + \frac{1 \times \alpha_f \times Q^2}{19,6 \times \left(5,57 \times 10^{-4}\right)^2} + \frac{1 \times \alpha_f \times Q^2}{19,6 \times \left(5,57 \times 10^{-4}\right)^2} + \frac{1 \times \alpha_f \times Q^2}{19,6 \times \left(5,57 \times 10^{-4}\right)^2} + \frac{1 \times \alpha_f \times Q^2}{19,6 \times \left(5,57 \times 10^{-4}\right)^2} + \frac{1 \times \alpha_f \times Q^2}{19,6 \times \left(5,57 \times 10^{-4}\right)^2} + \frac{1 \times \alpha_f \times Q^2}{19,6 \times \left(5,57 \times 10^{-4}\right)^2} + \frac{1 \times \alpha_f$$

$$f \times \frac{(104+0.3+15.5+8.54+0.7)}{0.0266} \times \frac{Q^2}{19.6 \times (5.57 \times 10^{-4})^2}$$

$$7.8 + H_S = 164449.9 \times \alpha_f \times Q^2 + 797767346.2 \times f \times Q^2$$

⇒ equação da CCI

$$H_S = -7.8 + 164449.9 \times \alpha_f \times Q^2 + 797767346.2 \times f \times Q^2$$

máquina.

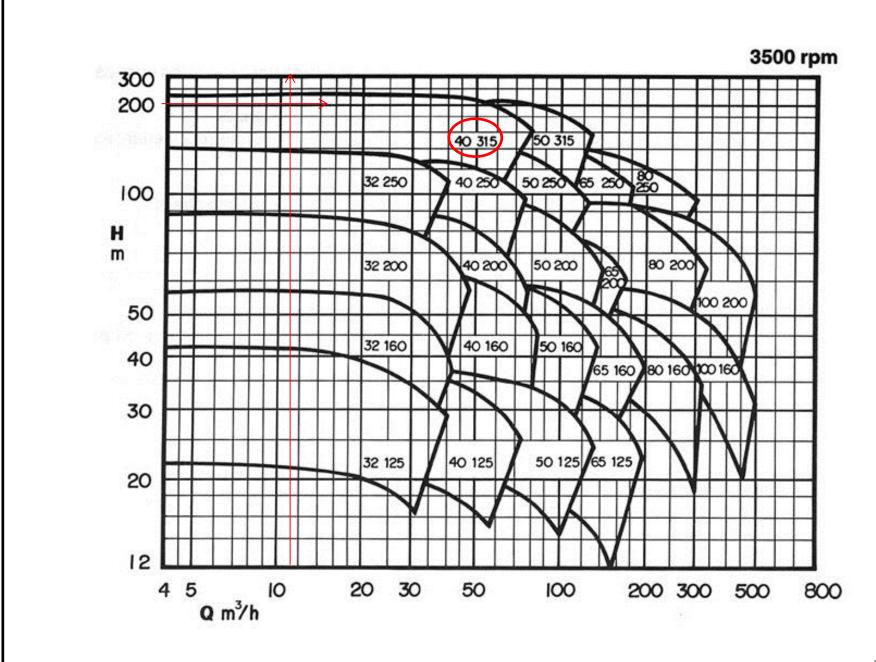
Com a vazão de projeto, determinamos o coeficiente de perda de carga distribuída e a carga manométrica de projeto.

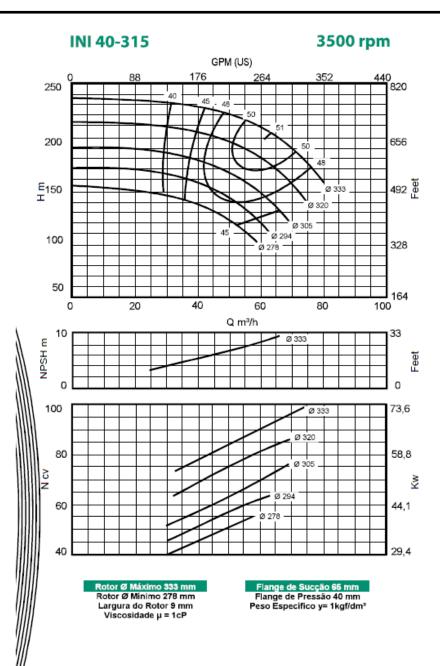
$$Q_{\text{projeto}} = 1.1 \times 3 = 3.3 \frac{L}{s} \approx 12 \frac{\text{m}^3}{\text{h}}$$

$Q (m^3/h)$	f	Re	α	Hs(m)
12	0,0242	127503	1	204,3

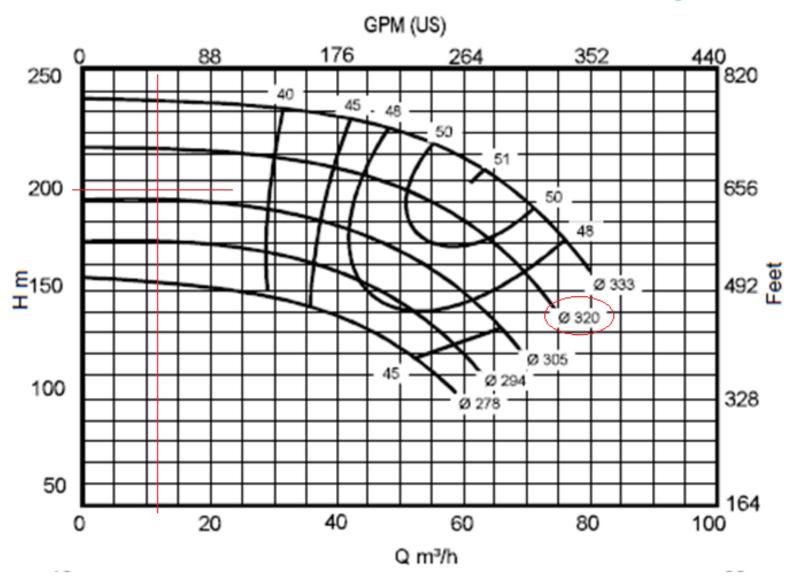
Escolhemos o fabricante de bomba, por exemplo a IMBIL

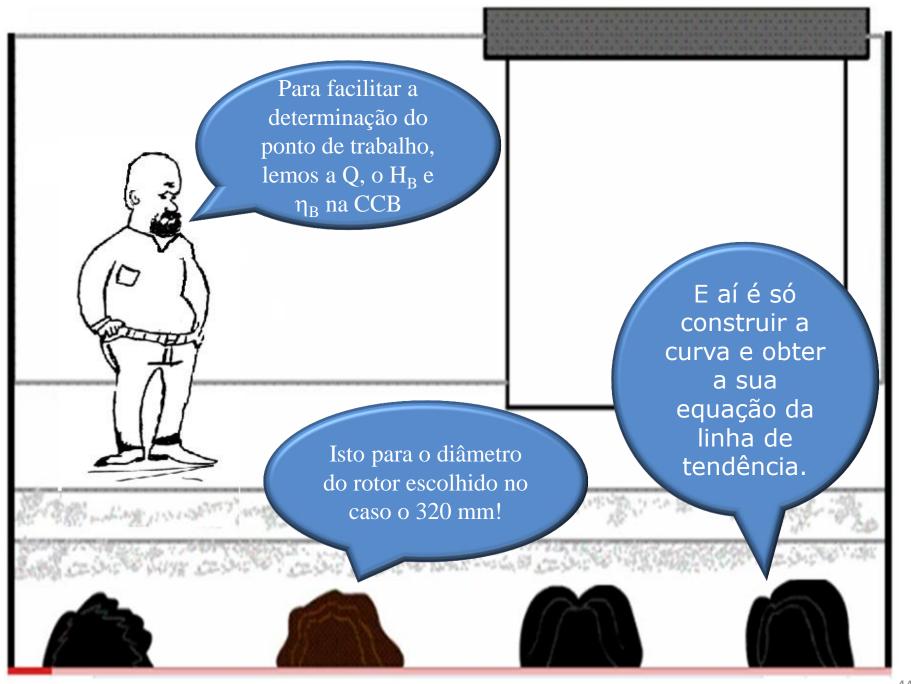
Escolhido o fabricante, com a vazão de projeto e a carga manométrica de projeto no diagrama de tijolos, selecionamos a bomba.

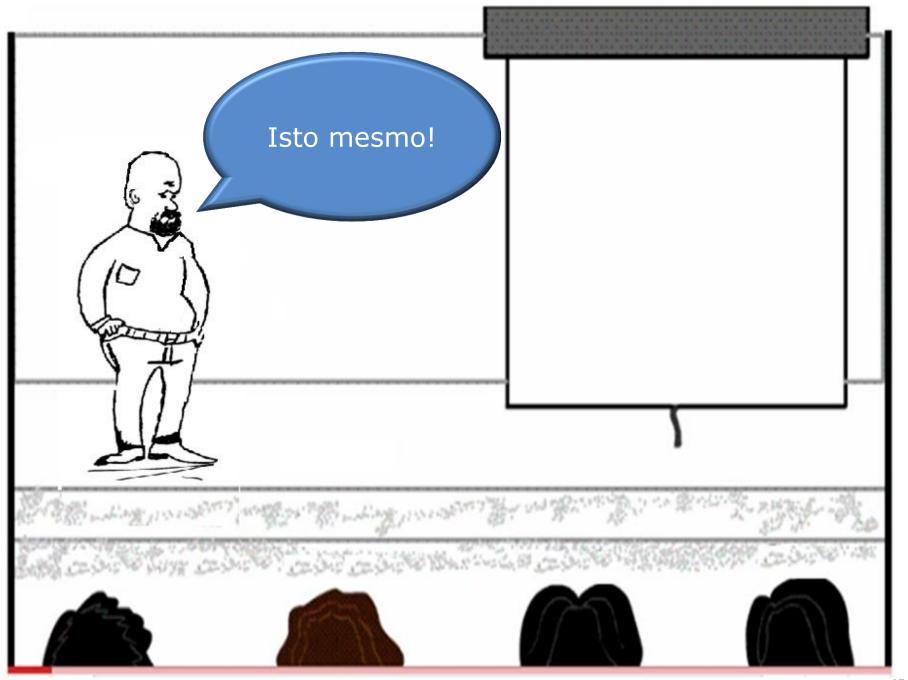




3500 rpm



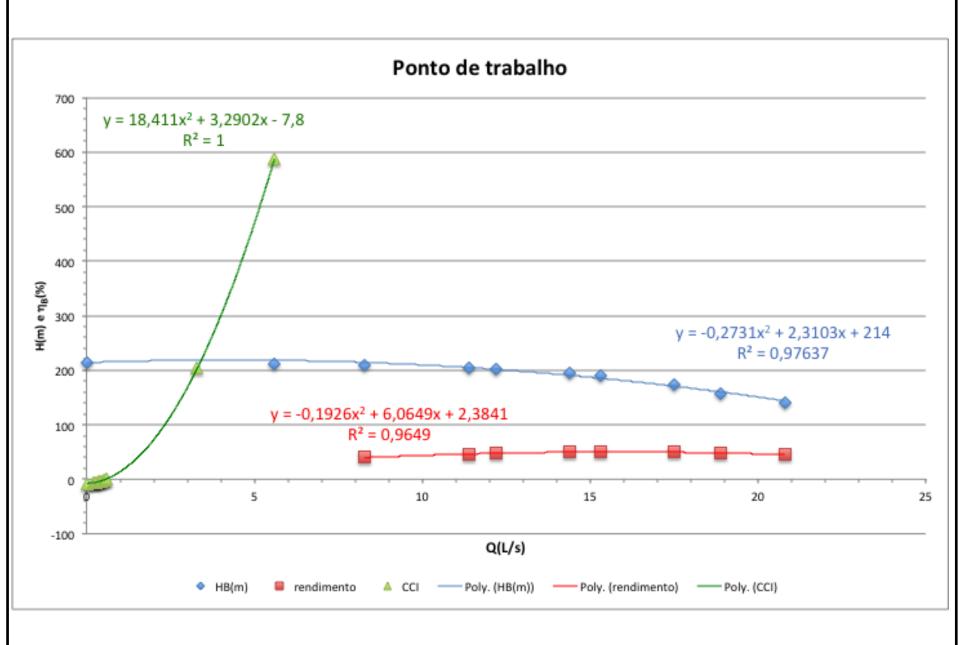




CCB			
Q(m³/h)	Q(L/s)	$H_B(m)$	$\eta_{\mathrm{B}}\left(\% ight)$
0	0	214	
20	5,6	212	
30	8,3	210	40
41	11,4	205	45
44	12,2	202	48
52	14,4	196	50
55	15,3	190	50,5
63	17,5	173	50
68	18,9	158	48
75	20,8	140	45

CCI

Q(L/s)	f	Re	α	Hs(m)
0				-7,8
0,2	0,0359	7727	1	-6,6
0,25	0,0341	9659	1	-6,1
0,3	0,0328	11591	1	-5,4
0,35	0,0318	13523	1	-4,7
0,4	0,031	15455	1	-3,8
0,45	0,0303	17387	1	-2,9
0,5	0,0298	19319	1	-1,8
0,55	0,0293	21251	1	-0,679
0,6	0,0289	23182	1	0,559
3,3	0,0242	127503	`1	204,2
5,6	0,0236	216369	`1	587,8

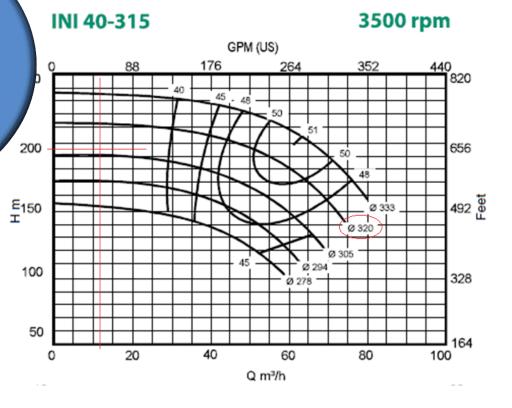


Determinando o ponto de trabalho

$$\begin{split} H_B &= -0,2731Q^2 + 2,3103Q + 214 \\ \eta_B &= -0,1926Q^2 + 6,0649Q + 2,3841 \\ H_S &= 18,411Q^2 + 3,2902Q - 7,8 \\ H_B &= H_S \\ &- 0,2731Q^2 + 2,3103Q + 214 = 18,411Q^2 + 3,2902Q - 7,8 \\ 18,411Q^2 + 0,9799Q - 221,8 &= 0 \\ Q_\tau &= \frac{-0,9799 + \sqrt{0,9799^2 + 4 \times 18,411 \times 221,8}}{2 \times 18,411} \cong 3,44 \frac{L}{s} \\ H_S &= 18,411 \times (3,44)^2 + 3,2902 \times (3,44) - 7,8 \cong 221,4m \\ \eta_B &= -0,1926 \times (3,44)^2 + 6,0649 \times (3,44) + 2,3841 \cong 21,0\% \\ N_{B_\tau} &= \frac{\gamma \times Q_\tau \times H_{B_\tau}}{\eta_{B_\tau}} = \frac{999,5 \times 9,8 \times (3,44/1000) \times 221,4}{0,21} \\ N_{B_\tau} &= 35524,3W \cong 35,5kW \end{split}$$

Refletindo sobre a CCB

Consideramos
a vazão do
ponto de
rendimento
máximo.



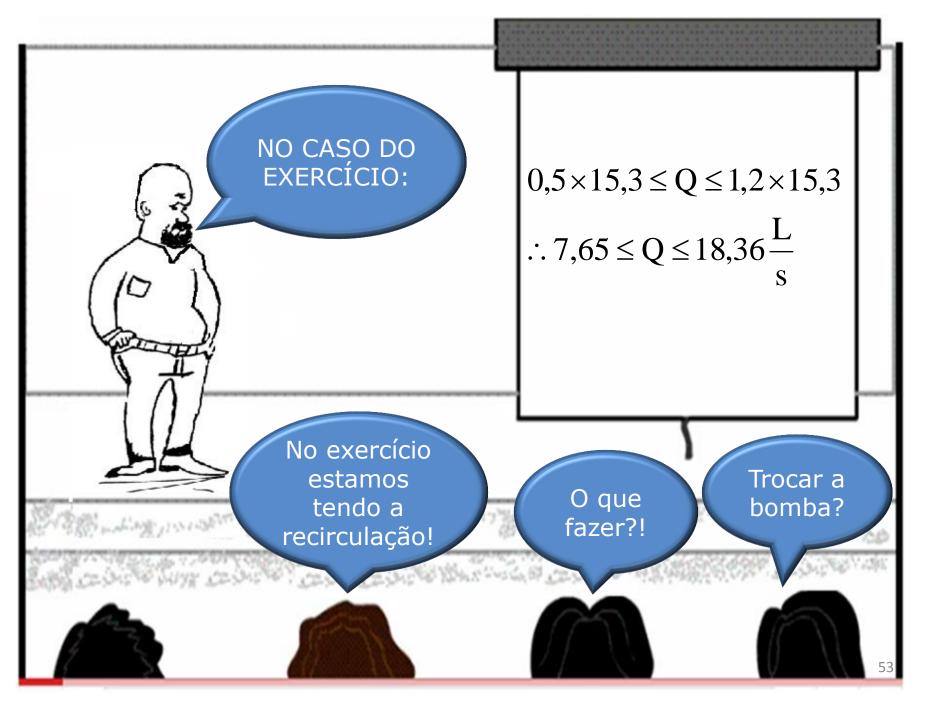
CCB			
$Q(m^3/h)$	Q(L/s)	$H_B(m)$	$\eta_{\mathrm{B}}\left(\% ight)$
0	0	214	
20	5,6	212	
30	8,3	210	40
41	11,4	205	45
44	12,2	202	48
52	14,4	196	50
55	15,3	190	50,5
63	17,5	173	50
68	18,9	158	48
75	20,8	140	45

Portanto para o rendimento máximo de 50,5%, teríamos uma vazão de 15,3 L/s.

Poderíamos considerar a faixa de trabalho:

$$0.5*Q_{\eta Bm\acute{a}x} \le Q \le 1.2*Q_{\eta Bm\acute{a}x}$$

No caso de vazões inferiores a 0,5*Q_{ηΒmáx} existem os problemas causados pela **recirculação** (na verdade a recirculação inicia com 70% da vazão do rendimento máximo) e acima de 1,2*Q_{ηΒmáx} **maior probabilidade de ocorrer o fenômeno de cavitação**.



Antes de pensar em trocar a bomba, vamos analisar a velocidade de escoamento.

Q = v × A :: v =
$$\frac{Q}{A} = \frac{3,44 \times 10^{-3}}{5,57 \times 10^{-4}}$$

v \(\times 6,2m/s\)

Será que esta velocidade é alta?

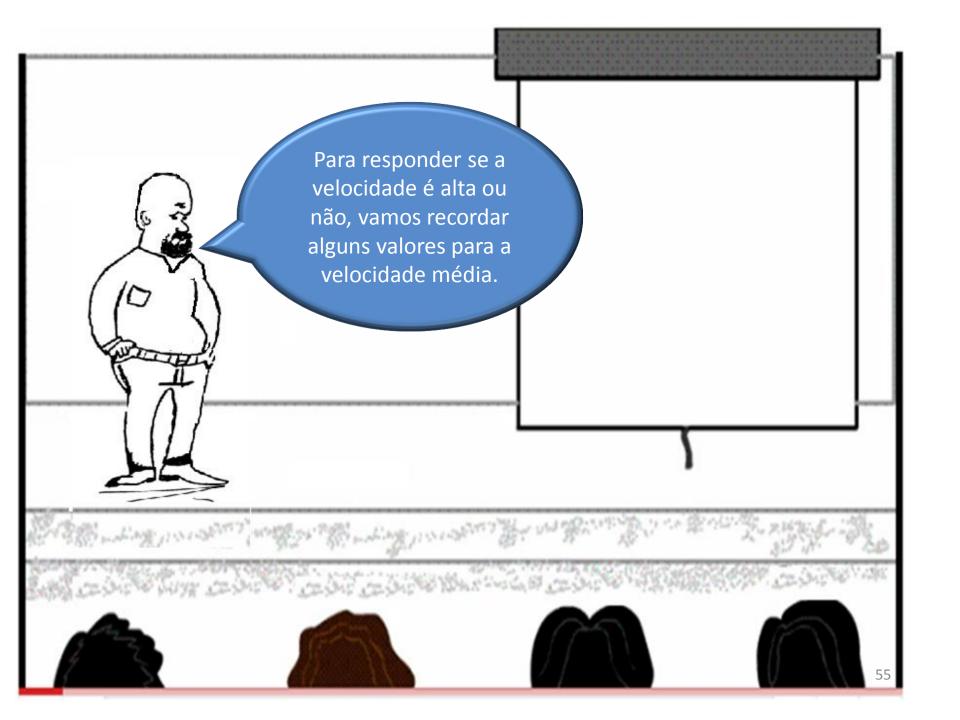
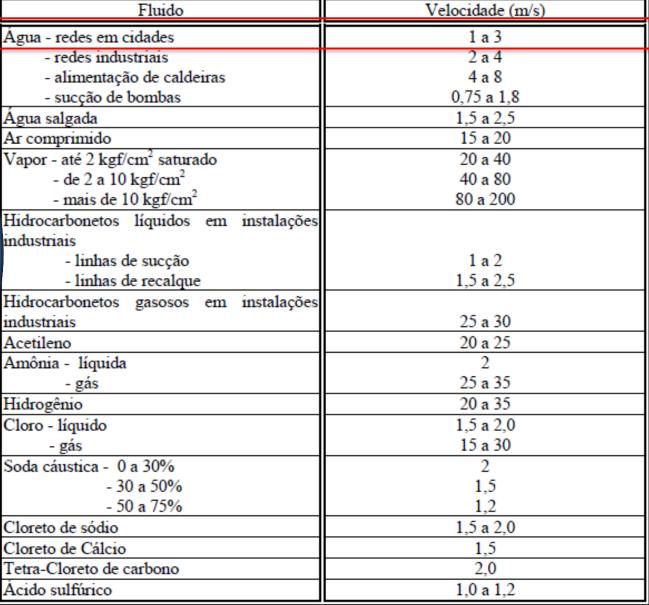
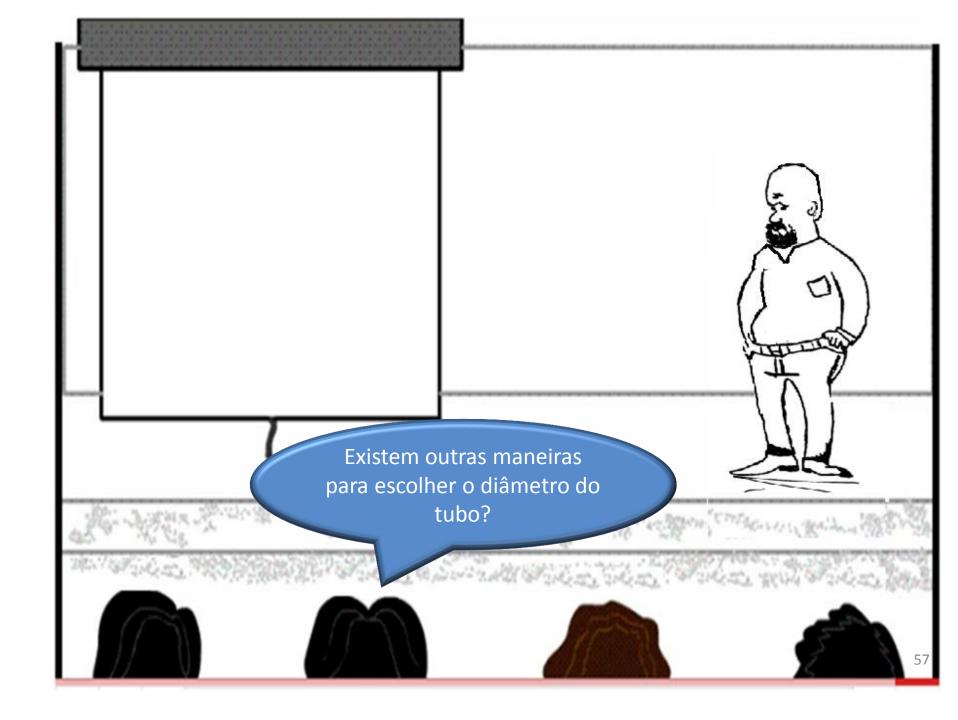
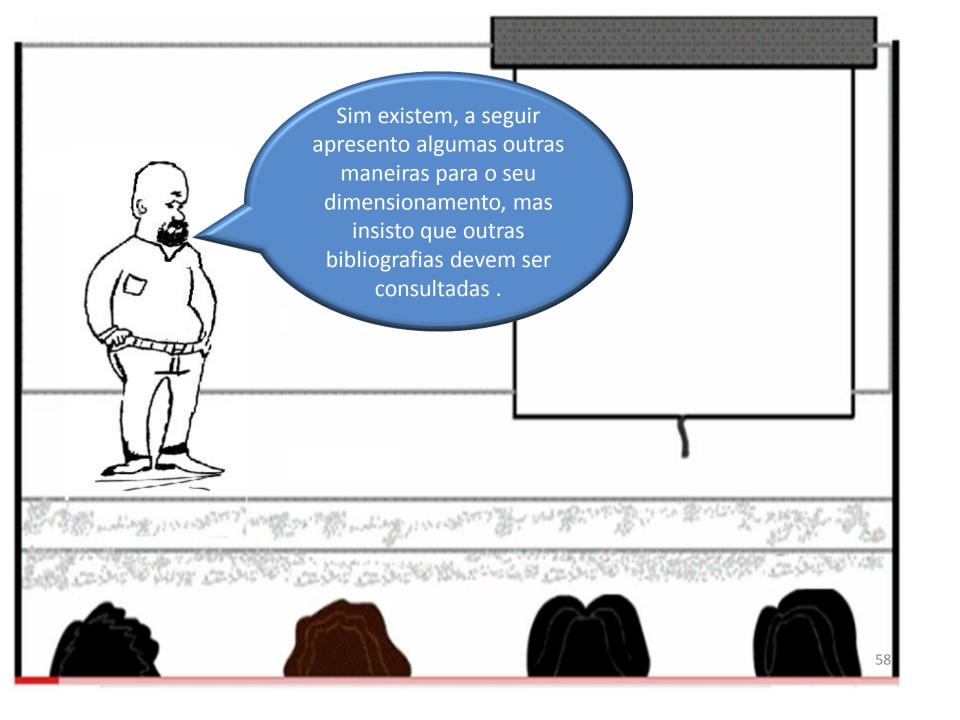


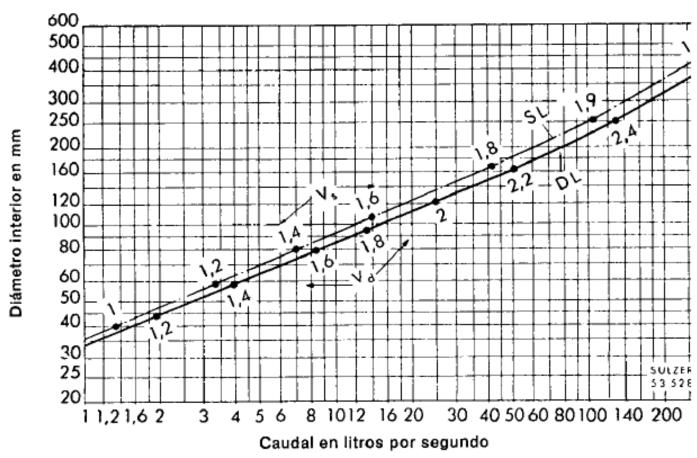
Tabela de velocidades recomendadas pela Alvenius Equipamentos Tubulares S/A







Companhia Sulzer



4. Diámetros interiores de tuberías de aspiración y de presión

(las cifras que aparecen a lo largo de las curvas indican las velocidades)

 v_s = velocidad en m/s en el conducto de aspiración SL

 v_d = velocidad en m/s en la tubería de impulsión DL

No caso da tubulação de PVC pode-se ainda especificar o diâmetro através da vazão

Vazão	Diâmetro do tubo de PVC	
Até 2.500 litros/hora	25 mm	
Entre 2.500 e 5.000 litros/hora	32 mm	
Entre 5.000 e 10.000 litros/hora	40 mm	
Entre 10.000 e 20.000 litros/hora	50 mm	

Qualquer que seja a tabela considerada fica fácil observar que devemos redimensionar a tubulação. No caso, eu vou supor um único diâmetro e opto por um de 2" espessura 40.

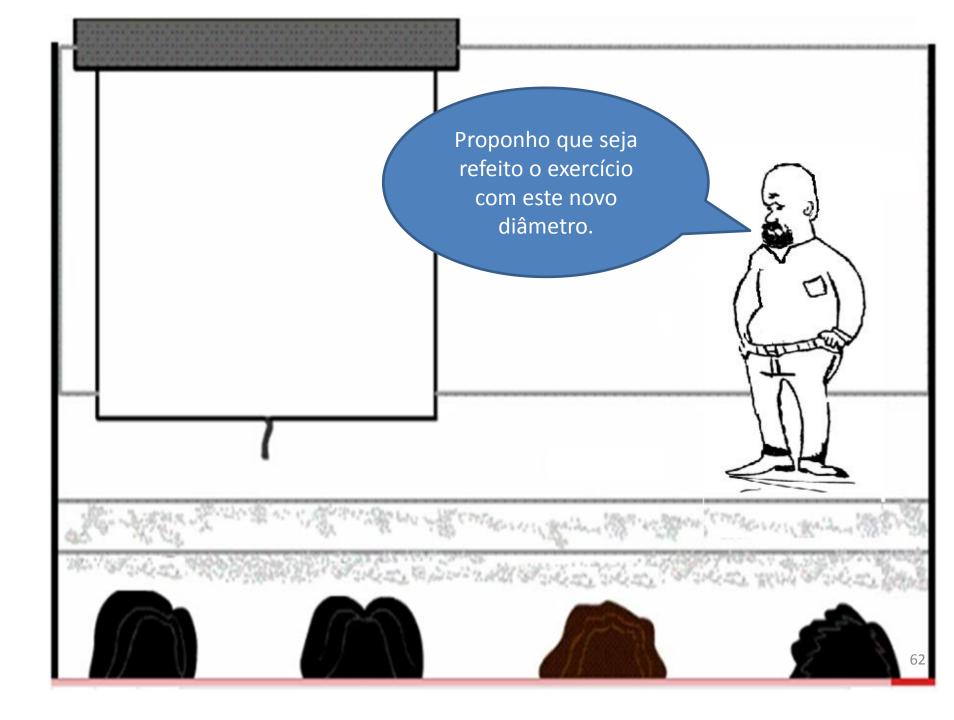
$$Q = v \times A :: v = \frac{Q}{A}$$

Considerando tubo de $D_N = 2$ " e espessura 40 :

$$v = \frac{3,44 \times 10^3}{21,7 \times 10^{-4}}$$

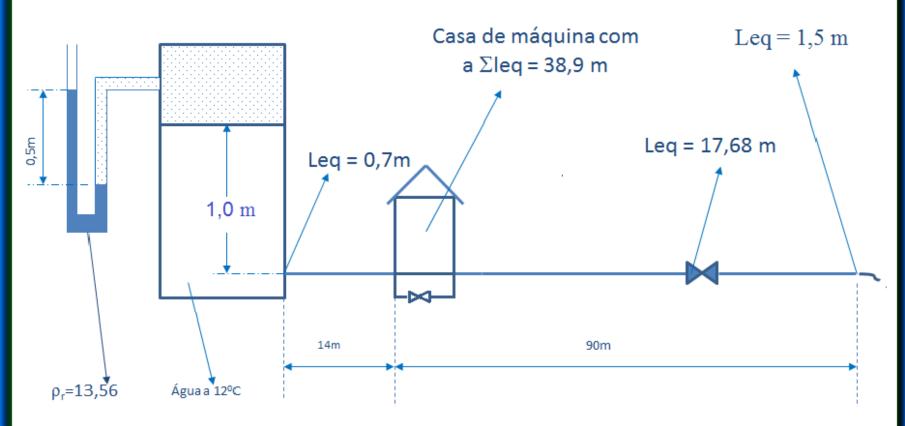
$$v \cong 1,6\frac{m}{s}$$

Esta velocidade está adequada!



Para a instalação hidráulica abaixo, que tem um único diâmetro, que é de aço 40 com $D_N = 2$ ", pede-se escrever a equação da CCI, obter sua representação gráfica e , se existir, obter a vazão de queda livre. E se necessário, considerando a bomba anteriormente escolhida, especifique seu novo ponto de trabalho.

Importante: Com a instalação operando em queda livre o fluido não passa pela casa de máquina e aí a somatória dos comprimentos equivalentes é considerada igual a 9,94 m



Solução

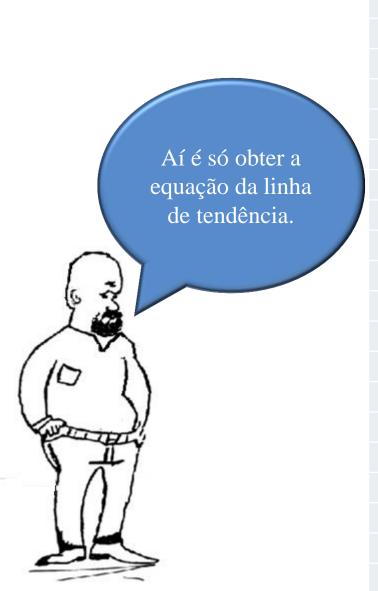
$$H_{inicial} + H_{S} = H_{final} + H_{ptotais}$$

$$\frac{0.5 \times 13.56 \times 1000 \times 9.8}{999.5 \times 9.8} + 1.0 + H_S = \frac{\alpha_f \times Q^2}{19.6 \times (21.7 \times 10^{-4})^2}$$

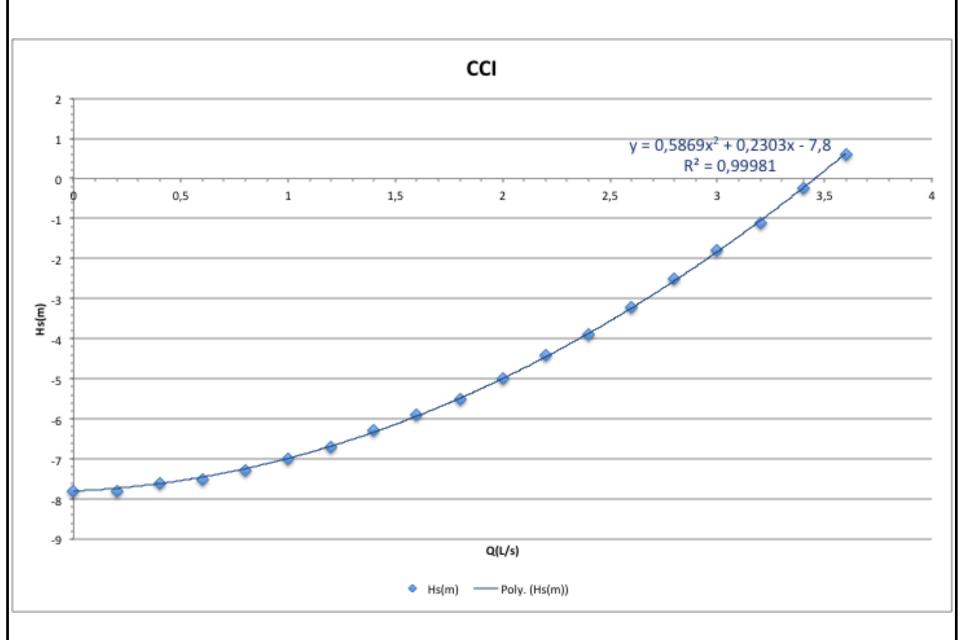
$$+ f_{2"} \times \frac{\left(14 + 90 + 2 + 0.7 + 17.68 + 1.5 + 9.94\right)}{0.0525} \times \frac{Q^2}{19.6 \times \left(21.7 \times 10^{-4}\right)^2}$$

$$H_S = -7.8 + \alpha_f \times 10834.9 \times Q^2 + f_{2''} \times 28030373.43 \times Q^2$$

Pelo Excel, temos:



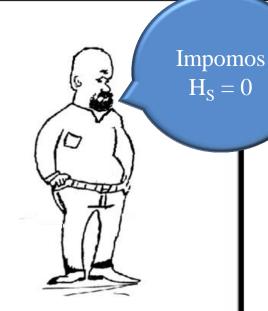
Q(L/s)	$f_{2"}$	$lpha_{ m f}$	Hs(m)
0	0	0	-7,8
0,2	0,0419	1	-7,8
0,4	0,0345	1	-7,6
0,6	0,0313	1	-7,5
0,8	0,0293	1	-7,3
1	0,0280	1	-7,0
1,2	0,0270	1	-6,7
1,4	0,0262	1	-6,3
1,6	0,0256	1	-5,9
1,8	0,0251	1	-5,5
2	0,0247	1	-5,0
2,2	0,0244	1	-4,4
2,4	0,0240	1	-3,9
2,6	0,0238	1	-3,2
2,8	0,0235	1	-2,5
3	0,0233	1	-1,8
3,2	0,0231	1	-1,1
3,4	0,0229	1	-0,244
3,6	0,0228	1	0,612



$$H_S = 0.5869Q^2 + 0.2303Q - 7.8$$

$$H_{\text{estática}} = -7.8 \text{m}$$

Como a carga
estática deu
negativa,
podemos afirmar
que existe o
escoamento em
queda livre!



$$0 = 0.5869Q^2 + 0.2303Q - 7.8$$

$$Q_{qL} = \frac{-0.2303 + \sqrt{0.2303^2 + 4 \times 0.5869 \times 7.8}}{2 \times 0.5869}$$

$$Q_{qL} \cong 3,45 \frac{L}{s}$$

67

