Primeira prova de laboratório – TA

Ao utilizar a bancada 1, foram coletados os dados ao lado, pede-se para os mesmos, calcular:

- a. a vazão de escoamento;
- b. a carga manométrica da bomba para a rotação de 3500 rpm;
- c. a perda de carga na válvula gaveta de 1";
- d. a perda de carga distribuída no tubo de 1";
- e. o comprimento equivalente da válvula gaveta de 1";
- f. a perda de carga antes da bomba;
- g. a perda de carga depois da bomba;

BANCADA 01				
Ponto de shut-off			Diâmetros nominais	
p _{me} (mmHg)	-70		D _{aB} (pol)	1,5"
p _{ms} (KPa)	265		D _{dB} (pol)	1"
			D _{saída_tub} (pol)	1"
72 % p _{ms} shut-off				
p _{me} (mmHg)	-135		Válvula gaveta	
p _{ms} (KPa)	190		p _{me} (psi)	4
			p _{ms} (psi)	1
Correção das pressões			Δh _{manômetro_U_para_hf} (mm)	83
he (cm)	11,5			
hs (cm)	9		Alturas (cm)	
		_	Z _{nível→eixo_bomba}	121
Cálculo da vazão			Z _{eixo_tubulação_sup→chão}	207,5
Δh (mm)	100		Z _{eixo_tub.→saída_tubo}	114,5
t (s)	32,16		L(perda de carga dist.)	200
At (cm ²)	74,5x74		$\Delta z_{entrada_saída_da_bomba}$	22

h. a vazão estimada pelo diagrama de Rouse.

Dados adicionais: n_{lida} = 3432 rpm; z_{saída bomba→chão} = 102 cm

$$\rho_{\acute{a}gua} = 998.2 \, \frac{kg}{m^3}; \nu_{\acute{a}gua} = 1{,}004 \times 10^{-6} \, \frac{m^2}{s}; \\ \rho_{Hg} = 13546 \frac{kg}{m^3}; \\ g = 9{,}8 \frac{m}{s^2}.$$

Tubo de aço $40 \text{ com } D_N = 1$ ", o que implica em $D_{int} = 26.6 \text{ mm e } A = 5.57 \text{ cm}^2$.

Tubo de aço $40 \text{ com } D_N = 1.5$ ", o que implica em $D_{int} = 40.8 \text{ mm e A} = 13.1 \text{ cm}^2$.

Tubo de aço 40 com $D_N = 2$ ", o que implica em $D_{int} = 52.5$ mm e A = 21.7 cm².