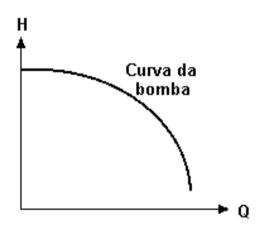
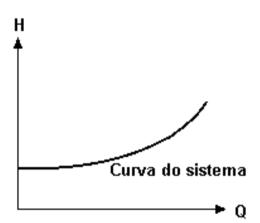
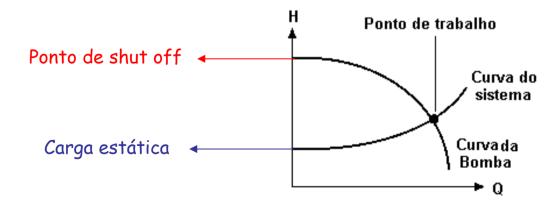

Quinta aula de complemento


11/03/2008

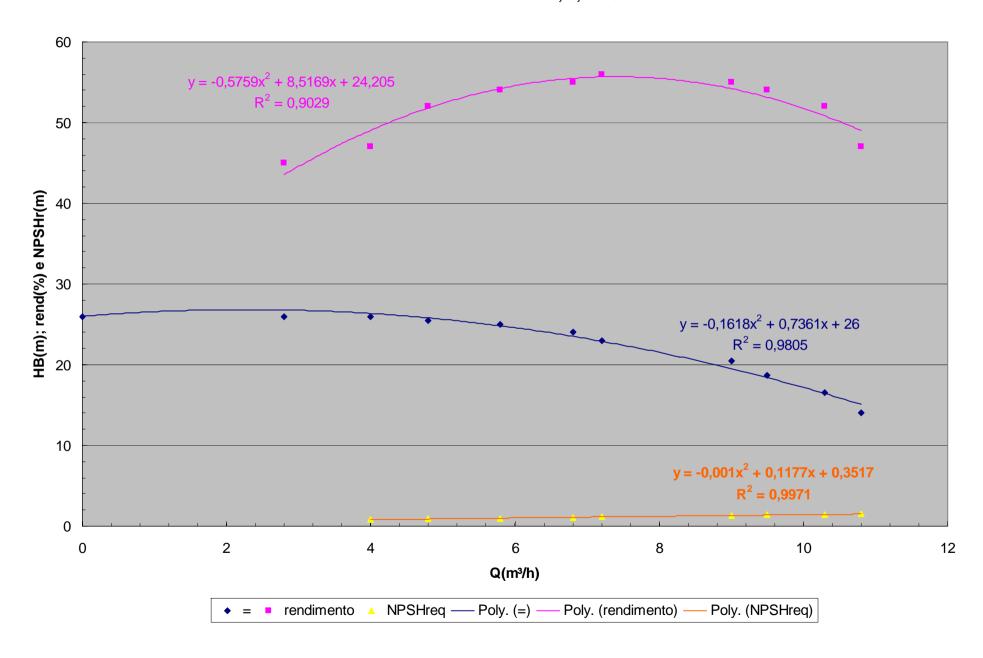

Ao se projetar uma bomba hidráulica visa-se, especificamente, o recalque de determinada vazão em certa altura manométrica (H_R) de modo a se obter o máximo rendimento (ponto de projeto do fabricante). Entretanto, esta bomba poderá ser posta a recalcar vazões (Q) maiores ou menores que aquela para a qual foi projetada mudando, com a variação de Q, a altura manométrica (H_B), a potência necessária ao acionamento (N_B) e o rendimento (η_B) (Carvalho, D. F. Instalações elevatórias: bombas. Belo Horizonte: IPUC, 1977, 355p).

Pelo exposto anteriormente, estuda-se o ponto de trabalho de uma bomba


O ponto de trabalho de uma bomba hidráulica é obtido pelo cruzamento da Curva Característica da Instalação [CCI] com a Curva Característica da Bomba [CCB], isto porque neste ponto a bomba é capaz de fornecer ao fluido a carga manométrica (HR) precisamente igual a que o fluido necessita para percorrer a instalação hidráulica com uma vazão Q em regime de escoamento permanente.

Ponto de trabalho da bomba

No ponto de trabalho, deve-se ter:


- 1. $Q_{\tau} \ge$ fator de segurança * $Q_{desejada}$, onde o fator de segurança deve ser no mínimo 1,1 e se possível não superior a 1,20;
- 2. $H_{B\tau} \ge H_{Bpp}$ que é obtido através da equação da CCI para a vazão de projeto ($Q_{projeto} = fator de segurança * <math>Q_{desejada}$);
- 3. $\eta_{B\tau}$ deve ser o mais próximo possível do rendimento máximo;
- 4. NPSH_{requerido} parâmetro importante para análise do fenômeno de cavitação.

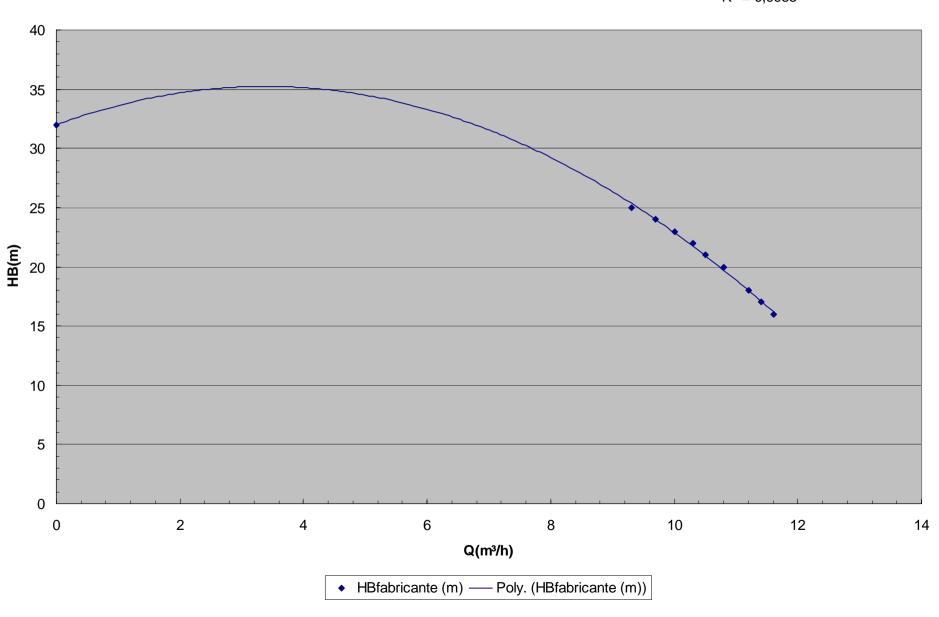
Exemplo de CCB

Bancadas 1; 3; 4 e 5 do laboratório - sala ISO1 do Centro Universitário da FEI - "curvas antigas"

Q(m³/h)	HB (m)	ηΒ (%)	NPSH(m)
0	26		
2,8	25,95	45	
4	25,9	47	0,8
4,8	25,5	52	0,9
5,8	25	54	1
6,8	24	55	1,1
7,2	23	56	1,15
9	20,5	55	1,3
9,5	18,7	54	1,4
10,3	16,5	52	1,45
10,8	14	47	1,5

Bomba INAPI - bancadas 1; 3; 4 e 5

Bancadas 1; 3; 4 e 5 do laboratório - sala ISO1 do Centro Universitário da FEI - "dados atuais"


Qfabricante (m³/h)	HBfabricante (m)
0	32,0
5,5	30,0
7,5	28,0
8,7	26,0
9,3	25,0
9,7	24,0
10,0	23,0
10,3	22,0
10,5	21,0
10,8	20,0
10,4	19,0
11,2	18,0
11,4	17,0
11,6	16,0
11,7	15,0

Eliminando-se alguns pontos, tem-se:

Qfabrican te (m³/h)	HBfabrica nte (m)
0	32
9,3	25
9,7	24
10	23
10,3	22
10,5	21
10,8	20
11,2	18
11,4	17
11,6	16

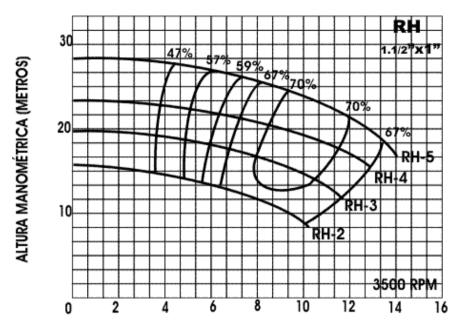
CCB INAPI bancadas 1; 3; 4 e 5

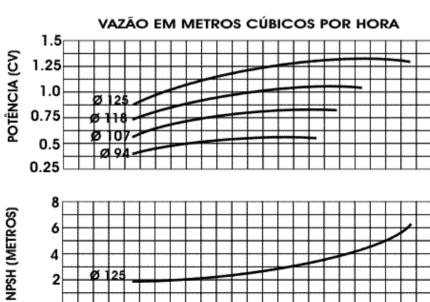
$$y = -0.2821x^2 + 1.9101x + 32$$

 $R^2 = 0.9983$

Estamos procurando entrar em contato com a INAPI para esclarecer qual das curvas está correta.

INAPI (85) 3299-7400 CE

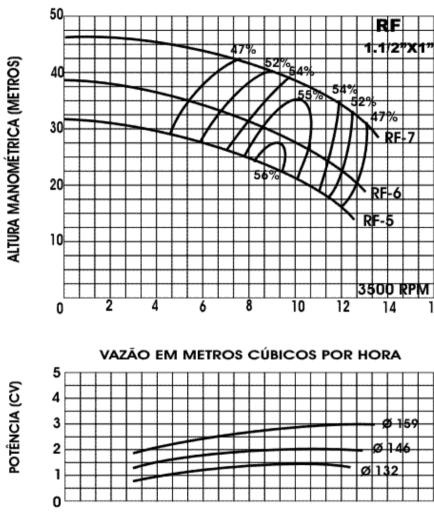

Bancada 2 do laboratório - sala ISO1 do Centro Universitário da FEI

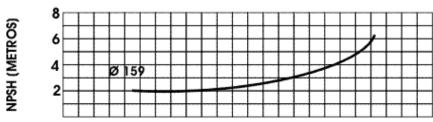


ALTURA A	MANOM	ETRICA	TOTA	L EM M	ETROS							
MODELO	CV	8	10	12	14	16	18	20	22	24	26	28
RH-2	1/2	10,0	9,0	8,0	6,5	4,0						
RH-3	3/4			11,0	10,0	9,2	8,3	6,0	1,0			
RH-4	1.0				13,0	11,8	11,0	10,2	8,5	4,5	2,0	
RH-5	1.5				14,0	13,2	12,0	11,8	11,0	10,0	7,5	5,0
VAZÃO EM METROS CÚBICOS POR HORA												

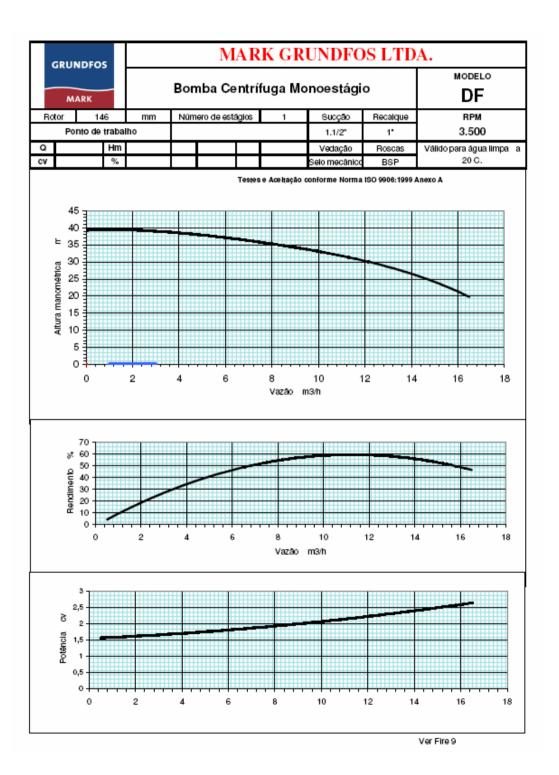
RUDC INDÚSTRIA E COMÉRCIO LTDA

CURVA RH


Bancada 6 do laboratório - sala ISO1 do Centro Universitário da FEI



ALTURA	ALTURA MANOMETRICA TOTAL EM METROS												
MODELO	CV	14	16	18	20	22	24	26	28	30	35	40	45
RF-5	1.5	12,0	11,0	10,5	10,0	9,5	9,0	8,0	7,0	5,0			
RF-6	2.0			12,8	12,5	12,0	11,5	11,0	10,5	9,6	7,0		
RF-7	RF-7 3.0 13,5 12,8 11,5 9,2 6,0												
VAZÃO	VAZÃO EM METROS CÚBICOS POR HORA												


RUDC INDÚSTRIA E COMÉRCIO LTDA

CURVA RF

Bancadas 7 e 8 do laboratório - sala ISO1 do Centro Universitário da FEI

Curva fornecida pelo fabricante

Dois exemplos de leituras do gráfico $H_B = f(Q)$

Hfabr (m)	Qfabr (m3/s)
39,1	0,000
39,8	0,0006
38,5	0,0011
37,0	0,0017
35,0	0,0022
33,0	0,0028
30,0	0,0033
26,0	0,0039
21,0	0,0044

$H_{m}(m)$	Q _{fabricante} (m ³ /h)	Q _{fabricante} (m ³ /s)
39	0,0	0,0000
39,5	2,0	0,0006
38,5	4,0	0,0011
37,0	6,0	0,0017
35,0	8,0	0,0022
33,0	10,0	0,0028
30,0	12,0	0,0033
26,0	14,0	0,0039
21,0	16,0	0,0044

Portanto para um projeto eficiente é fundamental que se obtenha o ponto de trabalho o mais próximo possível do ponto de trabalho real e para se obter esta situação deve-se refletir sobre o que pode causar variações na CCB?

Geralmente a CCB pode ser alterada:

- 1. alterando-se o diâmetro do rotor;
- 2. alterando-se a rotação da bomba;
- 3. bombeando fluidos viscosos, ou seja, com viscosidades superiores a 20 mm²/s;
- 4. com o envelhecimento da tubulação e/ou bomba

Nesta experiência o objetivo é constatar a variação da CCB com a rotação real.

Na verdade todas as curvas anteriores são nominais, isto porque foram fornecidas para uma rotação nominal, portanto devem ser corrigidas em função da rotação real, que deve ser obtida com o auxílio de um tacômetro.

A experiência é análoga a realizada no curso básico de mecânica dos fluidos, com exceção da leitura da rotação para cada posição da válvula controladora de vazão.

A determinação da rotação de uma bomba é feita pela a expressão:

$$\mathbf{n} = \frac{120 \times \mathbf{f}}{\mathbf{p}}$$

f → freqüência, que no Brasil é 60 Hz

 $p \rightarrow número de polos, que para o laboratório é 2$

Se o número de pólos do motor elétrico for 2, temos a rotação n= 3600 rpm e se o número de pólos do motor elétrico for 4, temos a rotação n= 1800 rpm.

Devido ao escorregamento, a rotação cai na faixa de 3500 rpm para bombas com motores elétricos de 2 pólos, e na faixa de 1750 rpm para Bombas com motores elétricos de 4 pólos. Os fabricantes de bombas geralmente adotam uma rotação de n = 3500 rpm para bombas com motores elétricos com 2 pólos e n= 1750 rpm para bombas com motores elétricos com 4 pólos e com estes valores de rotações eles levantam as CCB's das mesmas.

No nosso laboratório o motor da bomba é de 2 pólos o que equivale a dizer que a bomba ensaiada tem a rotação n = 3500 rpm.

Na experiência aplicaremos a equação da energia entre a entrada e a saída da bomba, onde já consideramos o coeficiente de energia cinética (a) igual a 1,0, isto pelo fato do escoamento ser turbulento

saída

entrada

$$H_{B} = \Delta z + \frac{\left(p_{saida} - p_{entrada}\right)}{\gamma} + \frac{v_{saida}^{2} - v_{entrada}^{2}}{2g}$$

$$v = \frac{Q}{A} = \frac{vazão}{\acute{a}rea}$$

Observe que, quando a válvula estiver totalmente aberta, teremos máxima vazão(Q) e mínima pressão de saída, quando estivermos com a válvula totalmente fechada, teremos máxima pressão de

saída e nenhuma vazão, portanto já temos dois (2) pontos, o de máxima pressão de saída (Q = 0) e o de mínima pressão de saída (Q = Qmáx).

Entre estes 2 pontos acrescentaremos mais 6 pontos para a realização do ensaio. A cada leitura de pressão, volume e tempo, devemos ler a rotação do eixo do motor que é feita com o auxilio de um aparelho chamado tacômetro.

A bancada de laboratório representa uma instalação de recalque.

válvula controladora de vazão

A rotação será diferente em cada leitura, diferente de 3500 rpm, que foi a rotação especificada pelo fabricante. Esta diferença de rotação é devido ao escorregamento e a variação de tensão na rede elétrica. A rotação deve ser lida pelo tacômetro.

Correção da Curva da Bomba

Condição de semelhança completa:

$$\phi_1 = \phi_2 \qquad \qquad \phi = \frac{Q}{n \times D_R^3}$$

Coeficiente de Vazão

$$\psi_1 = \psi_2$$

$$\psi = \frac{g \times H_B}{n^2 \times D_R^2}$$
Coeficiente Manométrico

Correção da Curva

Resulta em:

$$\begin{aligned} \mathbf{H_{B_{corr}}} &= \mathbf{H_{B_{calc}}} \times \left(\frac{\mathbf{n_{fabricante}}}{\mathbf{n_{lida}}} \right)^2 \\ \mathbf{Q_{corr}} &= \mathbf{Q_{calc}} \times \left(\frac{\mathbf{n_{fabricante}}}{\mathbf{n_{lida}}} \right) \end{aligned}$$

Tabela de dados

Ensaio	Vazão	P_{m1}	P _{m2}	Rotação(n)
Unidades				
1				
2				
3				
4				
5				
6				
7				
8				